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PREFACE

The first edition of Microeconomic Analysis was published in 1977. Af-
ter 15 years, I thought it was time for a major revision. There are two
types of changes I have made for this third edition, structural changes and
substantive changes.

The structural changes involve a significant rearrangement of the mate-
rial into “modular” chapters. These chapters have, for the most part, the
same titles as the corresponding chapters in my undergraduate text, In-
termediate Microeconomacs. This makes it easy for the student to go back
to the undergraduate book to review material when appropriate. It also
works the other way around: if an intermediate student wants to pursue
more advanced work on a topic, it is easy to turn to the appropriate chap-
ter in Microeconomic Analysis. 1 have found that this modular structure
also has two further advantages: it is easy to traverse the book in various
orders, and it makes it more convenient to use the book for reference.

In addition to this reorganization, there are several substantive changes.
First, I have rewritten substantial sections of the book. The material is now
less terse, and, I hope, more accessible. Second, I have brought a lot of
material up to date. In particular, the material on monopoly and oligopoly
has been completely updated, following the major advances in the theory
of industrial organization during the eighties.

Third, I have added lots of new material. There are now chapters on
game theory, asset markets, and information. These chapters can serve
as an appropriate introduction to this material for first-year economics
students. I haven't tried to provide in-depth treatments of these topics since
I’ve found that is better pursued in the second or third year of graduate



XIV  PREFACE

studies, after facility with the standard tools of economic analysis have
been mastered.

Fourth, I’ve added a number of new exercises, along with complete an-
swers to all odd-numbered problems. I must say that I am ambivalent
about putting the answers in the book—but I hope that most graduate
students will have sufficient willpower to avoid looking at the answer until
they have put some effort into solving the problems for themselves.

Organization of the book

As I mentioned above, the book is organized into a number of short chap-
ters. I suspect that nearly everyone will want to study the material in the
first half of the book systematically since it describes the fundamental tools
of microeconomics that will be useful to all economists. The material in
the second half of the book consists of introductions to a number of top-
ics in microeconomics. Most people will want to pick and choose among
these topics. Some professors will want to emphasize game theory; others
will want to emphasize general equilibrium. Some courses will devote a
lot of time to dynamic models; others will spend several weeks on welfare
economics.

It would be impossible to provide in-depth treatment of all of these top-
ics, so I have decided o provide introductions to the subjects. I’ve tried
to use the notation and methods described in the first part of the book
so that these chapters can pave the way to a more thorough treatment in
books or journal articles. Luckily, there are now several book-length treat-
ments of asset markets, game theory, information economics, and general
equilibrium theory. The serious student will have no shortage of materials
in which he or she can pursue the study of these topics.

Production of the book

In the process of rewriting the book, I have moved everything over to
Donald Knuth’s TEX system. I think that the book now looks a lot better;
furthermore, cross-referencing, equation numbering, indexing, and so on
are now a lot easier for both the author and the readers. Since the cost
to the author of revising the book is now much less, the reader can expect
to see more frequent revisions. (Perhaps that last sentence can be turned
into an exercise for the next edition. . .)

Part of the book was composed on MS-DOS equipment, but the majority
of it was composed and typeset on a NeXT computer. I used Emacs as
the primary editor, operating in Kresten Thorup’s auc-tex mode. I use
ispell for spell-checking, and the standard makeindex and bibtex tools
for indexing and bibliographic management. Tom Rokicki’s TEXview was
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the tool of choice for previewing and printing. Preliminary versions of the
diagrams were produced using Designer and Top Draw. An artist rendered
final versions using FreeHand and sent me the Encapsulated Postscript files
which were then incorporated into the TEX code using Trevor Darrell’s
psfig macros. I owe a special debt of gratitude to the authors of these
software tools, many of which have been provided to users free of charge.
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CHAPTER 1

TECHNOLOGY

The simplest and most common way to describe the technology of a firm
is the production function, which is generally studied in intermediate
courses. However, there are other ways to describe firm technologies that
are both more general and more useful in certain settings. We will discuss
several of these ways to represent firm production possibilities in this chap-
ter, along with ways to describe economically relevant aspects of a firm’s
technology.

1.1 Measurement of inputs and outputs

A firm produces outputs from various combinations of inputs. In order to
study firm choices we need a convenient way to summarize the production
possibilities of the firm, i.e., which combinations of inputs and outputs are
technologically feasible.

It is usually most satisfactory to think of the inputs and outputs as being
measured in terms of flows: a certain amount of inputs per time period are
used to produce a certain amount of outputs per unit time period. It is a
good idea to explicitly include a time dimension in a specification of inputs
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and outputs. If you do this you will be less likely to use incommensurate
units, confuse stocks and flows, or make other elementary errors. For ex-
ample, if we measure labor time in hours per week, we would want to be
sure to measure capital services in hours per week, and the production of
output in units per week. However, when discussing technological choices
in the abstract, as we do in this chapter, it is common to omit the time
dimension.

We may also want to distinguish inputs and outputs by the calendar time
in which they are available, the location in which they are available, and
even the circumstances under which they become available. By defining the
inputs and outputs with regard to when and where they are available, we
can capture some aspects of the temporal or spatial nature of production.
For example, concrete available in a given year can be used to construct
a building that will be completed the following year. Similarly, concrete
purchased in one location can be used in production in some other location.

An input of “concrete” should be thought of as a concrete of a particular
grade, available in a particular place at a particular time. In some cases we
might even add to this list qualifications such as “if the weather is dry”;
that is, we might consider the circumstances, or state of nature, in which
the concrete is available. The level of detail that we will use in specifying
inputs and outputs will depend on the problem at hand, but we should
remain aware of the fact that a particular input or output good can be
specified in arbitrarily fine detail.

1.2 Specification of technology

Suppose the firm has n possible goods to serve as inputs and/or outputs.
If a firm uses y; units of a good j as an input and produces y; of the good
as an output, then the net output of good j is given by y; = y7 — y; If
the net output of a good j is positive, then the firm is producing more of
good j than it uses as an input; if the net output is negative, then the firm
is using more of good j than it produces.

A production plan is simply a list of net outputs of various goods. We
can represent a production plan by a vector y in R™ where y; is negative
if the j** good serves as a net input and positive if the jt* good serves
as a net output. The set of all technologically feasible production plans is
called the firm’s production possibilities set and will be denoted by Y,
a subset of R™. The set Y is supposed to describe all patterns of inputs and
outputs that are technologically feasible. It gives us a complete description
of the technological possibilities facing the firm.

When we study the behavior of a firm in certain economic environments,
we may want to distinguish between production plans that are “immedi-
ately feasible” and those that are “eventually” feasible. For example, in
the short run, some inputs of the firm are fixed so that only production
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plans compatible with these fixed factors are possible. In the long run,
such factors may be variable, so that the firm’s technological possibilities
may well change.

We will generally assume that such restrictions can be described by some
vector z in R™. For example, z could be a list of the maximum amount
of the various inputs and outputs that can be produced in the time period
under consideration. The restricted or short-run production possi-
bilities set will be denoted by Y'(z); this consists of all feasible net output
bundles consistent with the constraint level z. Suppose, for example, that
factor n is fixed at g,, in the short run. Then Y(3,))={yinY :y, =7,}
Note that Y(z) is a subset of Y, since it consists of all production plans
that are feasible—which means that they are in Y—and that also satisfy
some additional conditions.

EXAMPLE: Input requirement set

Suppose we are considering a firm that produces only one output. In this
case we write the net output bundle as (y, —x) where x is a vector of inputs
that can produce y units of output. We can then define a special case of a
restricted production possibilities set, the input requirement set:

V(y)={xin R} : (y,—x) isin Y’}
The input requirement set is the set of all input bundles that produce at
least y units of output.
Note that the input requirement set, as defined here, measures inputs as

positive numbers rather than negative numbers as used in the production
possibilities set.

h ’

EXAMPLE: Isoquant

In the case above we can also define an isoquant:
Q(y) ={xin R} : x isin V(y) and x is not in V(y') for ¥’ > y}.

The isoquant gives all input bundles that produce exactly y units of output.

EXAMPLE: Short-run production possibilities set

Suppose a firm produces some output from labor and some kind of ma-
chine which we will refer to as “capital.” Production plans then look like
(y, ~l,—k) where y is the level of output, ! the amount of labor input,
and k the amount of capital input. We imagine that labor can be varied
immediately but that capital is fixed at the level k in the short run. Then

Y(k) ={(y,—l,—k)inY:k =k}

is an example of a short-run production possibilities set.
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EXAMPLE: Production function

If the firm has only one output, we can define the production function:

f(x) ={y in R:y is the maximum output associated with —x in Y}.

EXAMPLE: Transformation function

There is an n-dimensional analog of a production function that will be
useful in our study of general equilibrium theory. A production plan y in
Y is (technologically) efficient if there is no y’ in Y such that y’ >y
and y' # y; that is, a production plan is efficient if there is no way to
produce more output with the same inputs or to produce the same output
with less inputs. (Note carefully how the sign convention on inputs works
here.) We often assume that we can describe the set of technologically
efficient production plans by a transformation function T : R — R
where T(y) = 0 if and only if y is efficient. Just as a production function
picks out the maximum scalar output as a function of the inputs, the
transformation function picks out the maximal vectors of net outputs.

EXAMPLE: Cobb-Douglas technology

Let a be a parameter such that 0 < a < 1. Then the Cobb-Douglas
technology is defined in the following manner. See Figure 1.1A4.

Y = {(y,—%1,~22) in R® : y < 2%y}
- V(y) = {(z1,22) in R : y < 2f237"}
Qy) = {(z1,2) in R : y = z}z3 7}
Y(z) = {(y,—1,~x2) in R®: y < afay™® 25 = 2}

T(y, T1, :172) =Y- wllla"%_a

f(z1,22) = 23237

EXAMPLE: Leontief technology

Let ¢ > 0 and b > 0 be parameters. Then the Leontief technology is
defined in the following manner. See Figure 1.1B.

Y = {(y,—%1,~22) in R® : y < min(azy, bx2)}
V(y) = {(21,22) in R} : y < min(az;,bzs)}
Q(y) = {(z1,22) in R2+ : y = min(az;, bxy)}
T(y,a1,22) = y — min(azy, brs)
f(z1,z2) = min(azy, bas).
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FACTOR FACTOR
2 2 .
Slope = a/b
Q)
/ Q

Qws) v
Q) o7

FACTOR 1 FACTOR 1

A B

Cobb-Douglas and Leontief technologies. Panel A depicts
the general shape of a Cobb-Douglas technology, and panel B
depicts the general shape of a Leontief technology.

In this che{pter we will deal primarily with firms that produce only one
output; therefore, we will generally describe their technology by input re-
quirement sets or production functions. Later on we will use the production
set and the transformation function.

1.3 Activity analysis

The most straightforward way of describing production sets or input re-
quirement sets is simply to list the feasible production plans. For example,
suppose that we can produce an output good using factor inputs 1 and 2.
There are two different activities or techniques by which this production
can take place:

Technique A: one unit of factor 1 and two units of factor 2 produces one
unit of output.

Technique B: two units of factor 1 and one unit of factor 2 produces one
unit of output.

Let the output be good 1, and the factors be goods 2 and 3. Then we
can represent the production possibilities implied by these two activities
by the production set

Y = {(1; _1; _2)’ (1’ _27 _1)}
or the input requirement set
V(1) ={(1,2),2,1}

This input requirement set is depicted in Figure 1.2A.

Figure
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1.2
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It may be the case that to produce y units of output we could just use y
times as much of each input for y = 1,2,.... In this case you might think
that the set of feasible ways to produce y units of output would be given

by
V(y) = {(y,2v), 2y,9)}-

However, this set does not include all the relevant possibilities. It is true
that (y,2y) will produce y units of output if we use technique A and that
(2y,y) will produce y units of output if we use technique B—but what if
we use a mixture of techniques A and B?

FACTOR 2

= N W

NI- @

l
3
A

!
4 FACTOR1

FACTOR 2

= N W M

FACTOR 2

- N W A

|

1

I—
2 38
B

1
4 FACTOR1

] !
1 2 4 FACTOR1

i
3
[+

Input requirement sets. Panel A depicts V(1), panel B
depicts V(2), and panel C depicts V (y) for a larger value of y.

In this case we have to let y4 be the amount of output produced using
technique A and yp the amount of output produced using technique B.
Then V(y) will be given by the set

V(y) ={(ya +2ys,yp +2ya) : y = ya +yB}

So, for example, V(2) = {(2,4), (4,2),(3,3)}, as depicted in Figure 1.2B.
Note that the input combination (3, 3) can produce two units of output by
producing one unit using technique A and one unit using technique B.

1.4 Monotonic technologies

Let us continue to examine the two-activity example introduced in the last
section. Suppose that we had an input vector (3,2). Is this sufficient to
produce one unit of output? We may argue that since we could dispose of
2 units of factor 1 and be left with (1,2), it would indeed be possible to
produce 1 unit of output from the inputs (3,2). Thus, if such free disposal
is allowed, it is reasonable to argue that if x is a feasible way to produce
y units of output and x’ is an input vector with at least as much of each
input, then x’ should be a feasible way to produce y. Thus, the input
requirement sets should be monotonic in the following sense:
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MONOTONICITY. Ifx isin V(y) and x' > x, then x' is in V(y).

If we assume monotonicity, then the input requirement sets depicted in

Figure 1.2 become the sets depicted in Figure 1.3.

FACTOR 2 FACTOR 2

FACTOR 2

4 4
sf 3r
2| 2F
1 1

| | | 1 \ t | | 1 I 1 | {

1 2 3 4 FACTOR1 1 2 3 4 FACTOR1 1 2 3 4 FACTOR1

A B c
Monotonicity. Here are the same three input requirement Figure

sets if we also assume monotonicity.

1.3

Monotonicity is often an appropriate assumption for production sets as
well. In this context, we generally want to assume that if y is in ¥ and
¥y’ <y, then y’ must also be in Y. Note carefully how the sign convention
works here. If y’ <y, it means that every component of vector y’ is less
than or equal to the corresponding component of y. This means that the
production plan represented by y’ produces an equal or smaller amount
of all outputs by using at least as much of all inputs, as compared to y.
Hence, it is natural to suppose that if y is feasible, y’ is also feasible.

1.5 Convex technologies

Let us now consider what the input requirement set looks like if we want
to produce 100 units of output. As a first step, we might argue that if
we multiply the vectors (1,2) and (2,1) by 100, we should be able just
to replicate what we were doing before and thereby produce 100 times as
much. It is clear that not all production processes will necessarily allow for
this kind of replication, but it seems to be plausible in many circumstances.

If such replication is possible, then we can conclude that (100,200) and
(200,100) are in V(100). Are there any other possible ways to produce 100
units of output? Well, we could operate 50 processes of activity A and 50
processes of activity B. This would use 150 units of good 1 and 150 units
of good 2 to produce 100 units of output; hence, (150,150} should be in the
input requirement set. Similarly, we could operate 25 processes of activity

A and 75 processes of type B. This implies that

.25(100, 200) + .75(200, 100) = (175,125)
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should be in V(100). More generally,
£(100, 200) + (1 — £)(200, 100) = (100¢ + 200(1 — £), 200¢ + (1 — £)100)

should be in V(100) for t = 0,.01,.02,...,1.

We might as well make the obvious approximation here and let ¢ take
on any fractional value between 0 and 1. This leads to a production set of
the form depicted in Figure 1.4A. The precise statement of this property
is given in the next definition.

CONVEXITY. Ifx and x' are in V(y), then tx+ (1 —t)x' is in V(y)
for all0 <t < 1. That is, ¥(y) is a convex set.

FACTOR 2 FACTOR 2

250} 250}
200} 200}
150} 150 4
100} 100}

501 501

50 150 250 FACTOR 50 150 250 FACTOR
A B

Convex input requirement sets. If x and x’ can produce
y units of output, then any weighted average tx + (1 — ¢t)x’ can
also produce y units of output. Panel A depicts a convex input
requirement set with two underlying activities; panel B depicts
a convex input requirement set with many activities.

We have motivated the convexity assumption by a replication argument.
If we want to produce a “large” amount of output and we can replicate
“small” production processes, then it appears that the technology should be
modeled as being convex. However, if the scale of the underlying activities
is large relative to the desired amount of output, convexity may not be a
reasonable hypothesis.

However, there are also other arguments about why convexity is a rea-
sonable assumption in some circumstances. For example, suppose that we
are considering output per month. If one vector of inputs x produces y
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units of output per month, and another vector x’ also produces y units of
output per month, then we might use x for half a month and x’ for half a
month. If there are no problems introduced by switching production plans
in the middle of the month, we might reasonably expect to get y units of
output.

We applied the arguments given above to the input requirement sets, but
similar arguments apply to the production set. It is common to assume
that if y and y’ are bothin Y, then ty+ (1 —t)y’ isalsoinY for0 < ¢ < 1;
in other words, Y is a convex set. However, it should be noted that the
convexity of the production set is a much more problematic hypothesis than
the convexity of the input requirement set. For example, convexity of the
production set rules out “start up costs” and other sorts of returns to scale.
This will be discussed in greater detail shortly. For now we will describe
a few of the relationships between the convexity of V(y), the curvature of
the production function, and the convexity of Y.

Convex production set implies convex input requirement set. If
the production set 'Y is a convez set, then the associated input requirement
set, V(y), is a convez set.

Proof. IfY is a convex set then it follows that for any x and x’ such that
(y, —x) and (y, —x') are in Y, we must have (ty + (1 — )y, —tx — (1 —)x’)
in Y. This is simply requiring that (y, —(tx+ (1 —¢)x)) isin Y. It follows
that if x and x’ are in V(y), tx + (1 — ¢)x’ is in V(y) which shows that
V(y) is convex. 1

Convex input requirement set is equivalent to quasiconcave pro-
duction function. V(y) is a convez set if and only if the production
function f(x) is a quasiconcave function.

Proof. V(y) = {x: f(x) > y}, which is just the upper contour set of f(x).

But a function is quasiconcave if and only if it has a convex upper contour
set; see Chapter 27, page 496. i

1.6 Regular technologies
Finally, we consider a weak regularity condition concerning V (y).
REGULAR. V(y) is a closed, nonempty set for all y > 0.

The assumption that V(y) is nonempty requires that there is some con-

ceivable way to produce any given level of output. This is simply to avoid
qualifying statements by phrases like “assuming that y can be produced.”
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The assumption that V(y) is closed is made for technical reasons and is
innocuous in most contexts. One implication of the assumption that V(y)
is a closed set is as follows: suppose that we have a sequence (x*) of input
bundles that can each produce y and this sequence converges to an input
bundle x°. That is to say, the input bundles in the sequence get arbitrarily
close to x0. If V(y) is a closed set then this limit bundle x® must be capable
of producing y. Roughly speaking, the input requirement set must “include
its own boundary.”

1.7 Parametric representations of technology

Suppose that we have many possible ways to produce some given level of
output. Then it might be reasonable to summarize this input set by a
“smoothed” input set as in Figure 1.5. That is, we may want to fit a nice
curve through the possible production points. Such a smoothing process
should not involve any great problems, if there are indeed many slightly
different ways to produce a given level of output.

FACTOR 2

FACTOR 1

Smoothing an isoquant. An input requirement set and a
“smooth” approximation to it.

If we do make such an approximation to “smooth” the input requirement
set, it is natural to look further for a convenient way to represent the
technology by a parametric function involving a few unknown parameters.
For example, the Cobb-Douglas technology mentioned earlier implies that
any input bundle (z;,z,) that satisfies %23 > y can produce at least y
units of output.

These parametric technological representations should not necessarily be
thought of as a literal depiction of production possibilities. The produc-
tion possibilities are the engineering data describing the physically possi-
ble production plans. It may well happen that this engineering data can
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be reasonably well described by a convenient functional form such as the
Cobb-Douglas function. If so, such a parametric description can be very
useful.

In most applications we only care about having a parametric approxima-
tion to a technology over some particular range of input and output levels,
and it is common to use relatively simple functional forms to make such
a parametric approximation. These parametric representations are very
convenient as pedagogic tools, and we will often take our technologies to
have such a representation. We can then bring the tools of calculus and
algebra to investigate the production choices of the firm.

1.8 The technical rate of substitution

Assume that we have some technology summarized by a smooth production
function and that we are producing at a particular point y* = f(z%,z3).
Suppose that we want to increase the amount of input 1 and decrease the
amount of input 2 so as to maintain a constant level of output. How can we
determine this technical rate of substitution between these two factors?

In the two-dimensional case, the technical rate of substitution is just the
slope of the isoquant: how one has to adjust z2 to keep output constant
when z; changes by a small amount, as depicted in Figure 1.6. In the
n-dimensional case, the technical rate of substitution is the slope of an
isoquant surface, measured in a particular direction.

Let z3(z) be the (implicit) function that tells us how much of z; it takes
to produce y if we are using z; units of the other input. Then by definition,
the function zs(z1) has to satisfy the identity

flzr,z2(z1)) =y
We are after an expression for dz2(x})/0z;. Differentiating the above

identity, we find:
Of(x7) | 9f(x") Oza(s)

83:1 Bzg 3(131 =0

o Oxa(zy) _  Of(x7)/0z
0r,  Of(x*)/0xy

This gives us an explicit expression for the technical rate of substitution.
Here is another way to derive the technical rate of substitution. Think

of a vector of (small) changes in the input levels which we write as dx =

(dzy,dzs). The associated change in the output is approximated by

_97,
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FACTOR 2

f(x, X} =y

FACTOR 1

Figure The technical rate of substitution. The technical rate of
1.6 substitution measures how one of the inputs must adjust in order
to keep output constant when another input changes.

This expression is known as the total differential of the function f(x).
Consider a particular change in which only factor 1 and factor 2 change,
and the change is such that output remains constant. That is, dz; and dzs
adjust “along an isoquant.”

Since output remains constant, we have

_of of
‘ 0= oz, dzq + B2y dxy,
which can be solved for ‘
Elifg o ~6f/81'1
dey  0f/0zs”

Either the implicit function method or the total differential method may be
used to calculate the technical rate of substitution. The implicit function
method is a bit more rigorous, but the total differential method is perhaps
more intuitive.

EXAMPLE: TRS for a Cobb-Douglas technology

Given that f(zy,z2) = w%xé_“, we can take the derivatives to find

of(x a1 l-q 2
o =ast e =a| 7]
0fX) _ i v a—a_q_n[2]"
—EQE = (1 a)z1x2 = (1 a) [x2:| .

It follows that
doale)  Of/0m1 _

a2
8.’121 o 8f/8$2 - 1 —alz )
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1.9 The elasticity of substitution

The technical rate of substitution measures the slope of an isoquant. The
elasticity of substitution measures the curvature of an isoquant. More
specifically, the elasticity of substitution measures the percentage change in
the factor ratio divided by the percentage change in the TRS, with output
being held fixed. If we let A(z2/x1) be the change in the factor ratio and
ATRS be the change in the technical rate of substitution, we can express

this as
A( Z2/%y )
z2/Ty
ATRS *
TRS

g =

This is a relatively natural measure of curvature: it asks how the ratio of
factor inputs changes as the slope of the isoquant changes. If a small change
in slope gives us a large change in the factor input ratio, the isoquant is
relatively flat which means that the elasticity of substitution is large.

In practice we think of the percent change as being very small and take
the limit of this expression as A goes to zero. Hence, the expression for o

becomes
- _ TRS d(ZCQ/ZEl)

7= (22/z1) dTRS

It is often convenient to calculate o using the logarithmic derivative.
In general, if y = g(z), the elasticity of y with respect to x refers to the
percentage change in y induced by a (small) percentage change in . That
is,

d
f__yg _dyx
==
Tl‘ dry

Provided that = and y are positive, this derivative can be written as

dlny
¢~ dnz

To prove this, note that by the chain rule

dlnydinz  dlny
dinz dr  dz

Carrying out the calculation on the left-hand and the right-hand side of
the equals sign, we have

dlnyl _ldy

dlnzz ydz’
or

diny _zdy

dlnz ydz’ .



14 TECHNOLOGY (Ch. 1)

Alternatively, we can use total differentials to write

1
diny = —dy
Y
dlnz = -l—da:,
z
so that N
_dhny @iz:_

€= dnz dry

Again, the calculation given first is more rigorous, but the second calcula-
tion is more intuitive.
Applying this to the elasticity of substitution, we can write

_ din(z2/71)
7= dIn[TRS|

(The absolute value sign in the denominator is to convert the TRS to a
positive number so that the logarithm makes sense.)

EXAMPLE: The elasticity of substitution for the Cobb-Douglas pro-
duction function

‘

We have seen above that

TRS = —— 22
1- azxy
o 1
T2 _ _~"%7TRs.
I a
It follows that 1
mZ2 =m>"2 4+ m(TRS|
T a
This in turn implies
o= din(zy/zy)
~ dln|TRS|

1.10 Returns to scale

Suppose that we are using some vector of inputs x to produce some output
y and we decide to scale all inputs up or down by some amount £ > 0.
What will happen to the level of output?
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In the cases we described earlier, where we wanted only to scale output
up by some amount, we typically assumed that we could simply replicate
what we were doing before and thereby produce ¢ times as much output
as before. If this sort of scaling is always possible, we will say that the
technology exhibits constant returns to scale. More formally,

CONSTANT RETURNS TO SCALE. A technology ezhibits con-
stant returns to scale if any of the following are satisfied:

(1) y inY impliesty isinY, for allt > 0;
(2) x in V(y) implies tx is in V(ty) for allt > 0;

(8) f(tx) = tf(x) for all t > 0; i.e., the production function f(x) is homo-
geneous of degree 1.

The replication argument given above indicates that constant returns to
scale is often a reasonable assumption to make about technologies. How-
ever, there are situations where it is not a plausible assumption.

One circumstance where constant returns to scale may be violated is
when we try to “subdivide” a production process. Even if it is always pos-
sible to scale operations up by integer amounts, it may not be possible to
scale operations down in the same way. For example, there may be some
minimal scale of operation so that producing output below this scale in-
volves different techniques. Once the minimal scale of operation is reached,
larger levels of output can be produced by replication.

Another circumstance where constant returns to scale may be violated
is when we want to scale operations up by noninteger amounts. Certainly,
replicating what we did before is simple enough, but how do we do one and
one half times what we were doing before?

These two situations in which constant returns to scale is not satisfied
are only important when the scale of production is small relative to the
minimum scale of output.

A third circumstance where constant returns to scale is inappropriate is
when doubling all inputs allows for a more efficient means of production to
be used. Replication says that doubling our output by doubling our inputs
is feasible, but there may be a better way to produce output. Consider,
for example, a firm that builds an oil pipeline between two points and
uses as inputs labor, machines, and steel to construct the pipeline. We
may take the relevant measure of output for this firm to be the capacity
of the resulting line. Then it is clear that if we double all inputs to the
production process, the output may more than double since increasing the
surface area of a pipe by 2 will increase the volume by a factor of 4.1 In

1 Of course, a larger pipe may be more difficult to build, so we may not think of output
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this case, when output increases by more than the scale of the inputs, we
say the technology exhibits increasing returns to scale.

INCREASING RETURNS TO SCALE. A technology ezhibits in-
creasing returns to scale if f(tx) > tf(x) for allt > 1.

A fourth way that constant returns to scale may be violated is by being
unable to replicate some input. Consider, for example, a 100-acre farm. If
we wanted to produce twice as much output, we could use twice as much
of each input. But this would imply using twice as much land as well. It
may be that this is impossible to do since more land may not be available.
Even though the technology exhibits constant returns to scale if we increase
all inputs, it may be convenient to think of it as exhibiting decreasing
returns to scale with respect to the inputs under our control. More
precisely, we have:

DECREASING RETURNS TO SCALE. A technology exhibits de-
creasing returns to scale if f(tx) < tf(x) for allt > 1.

The most natural case of decreasing returns to scale is the case where we
are unable to replicate some inputs. Thus, we should expect that restricted
production possibility sets would typically exhibit decreasing returns to
scale. It turns out that it can always be assumed that decreasing returns
to scale is due to the presence of some fixed input.

To show this, suppose that f(x) is a production function for some k
inputs that exhibits decreasing returns to scale. Then we can introduce a
new “mythical” input and measure its level by z. Define a new production
function F(z,x) by

F(z,x) = zf(x/2).

Note that F exhibits constant returns to scale. If we multiply all inputs—
the x inputs and the z input—by some ¢ > 0, we have output going up
by t. And if z is fixed at 1, we have exactly the same technology that we
had before. Hence, the original decreasing returns technology f(x) can be
thought of as a restriction of the constant returns technology F(z,x) that
results from setting z = 1.

Finally, let us note that the various kinds of returns to scale defined
above are global in nature. It may well happen that a technology exhibits
increasing returns to scale for some values of x and decreasing returns to
scale for other values. Thus in many circumstances a local measure of
returns to scale is useful. The elasticity of scale measures the percent
increase in output due to a one percent increase in all inputs—that is, due
to an increase in the scale of operations.

necessarily increasing exactly by a factor of 4. But it may very well increase by more
than a factor of 2.
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Let y = f(x) be the production function. Let t be a positive scalar, and
consider the function y(¢) = f(tx). If t = 1, we have the current scale of
operation; if t > 1, we are scaling all inputs up by ¢; and if £ < 1, we are
scaling all inputs down by ¢.

The elasticity of scale is given by

dy(t

e(x) = L,
T

evaluated at t = 1. Rearranging this expression, we have

e(x) = dy(t) t _ df(tx) t .
. dt yle=1 dt  f{tx)le=1
- I
Note that we must evaluate the expression at ¢ = 1 to calculate the elas-
ticity of scale at the point x. We say that the technology exhibits locally
increasing, constant, or decreasing returns to scale as e(x) is greater, equal,
or less than 1.

EXAMPLE: Returns to scale and the Cobb-Douglas technology

Suppose that y = z¢x3. Then f(tz1,tzs) = (tx;)%(tz2)’ = to+bz¢z} =
ta*2f(x1,x2). Hence, f(tzy,tzs) = tf(zy, ) if and only if a +b = 1.
Similarly, @ + b > 1 implies increasing returns to scale, and a +b < 1
implies decreasing returns to scale.

In fact, the elasticity of scale for the Cobb-Douglas technology turns out
to be precisely a + b. To see this, we apply the definition:

d(twl)“(tz2)b dta+bl‘a1‘b _
7 = 7 12 — (a4 byt 12925,

Evaluating this derivative at ¢t = 1 and dividing by f(z1,z2) = ¢z} gives
us the result.

1.11 Homogeneous and homothetic technologies
A function f(x) is homogeneous of degree k if f(tx) = t*f(x) for all

t > 0. The two most important “degrees” in economics are the zeroth
and first degree.? A zero-degree homogeneous function is one for which

2 However, it is sometimes thought that the Masterf
important.

) agp even more
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f(tx) = f(x), and a first-degree homogeneous function is one for which
f(tx) =tf(x).

Comparing this definition to the definition of constant returns to scale,
we see that a technology has constant returns to scale if and only if its
production function is homogeneous of degree 1.

A function g : R — R is said to be a positive monotonic transfor-
mation if g is a strictly increasing function; that is, a function for which
z > y implies that g(z) > g¢(y). (The “positive” is usually implied by
the context.) A homothetic function is a monotonic transformation of
a function that is homogeneous of degree 1. In other words, f(x) is ho-
mothetic if and only if it can be written as f(x) = g(h(x)) where h(-) is
homogeneous of degree 1 and g(-) is a monotonic function. See Figure 1.7
for a geometric interpretation.

FACTOR 2 FACTOR 2
2x 2X
2x' 2X
X' !
f(x) =2y f(x) =2y
fixy=y fx)=y

FACTOR 1 FACTOR 1

h A B

Homogeneous and homothetic functions. Panel A depicts
a function that is homogeneous of degree 1. If x and x’ can both
produce y units of output, then 2x and 2x’ can both produce
2y units of output. Panel B depicts a homothetic function. If
x and x’ produce the same level of output, ¥, then 2x and 2x’
can produce the same level of output, but not necessarily 2y.

Think of a monotonic transformation as a way to measure output in
different units. For example, we could measure the output of a chemical
process in pints or quarts. Changing from one unit to another in this
case is pretty simple—we just multiply or divide by two. A more exotic
monotonic transformation would be one in which we measure the output in
the square of the number of quarts. Given this interpretation, a homothetic
technology is one for which there is some way to measure output so that
the technology “looks like” constant returns to scale.

Homogeneous and homothetic functions are of interest due to the simple
ways that their isoquants vary as the level of output varies. In the case of
a homogeneous fungtion, the isoquants are all just “blown up” versions of

s an 4
of | .
lfg i‘fs

e g m

% a*
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a single isoquant. If f(x) is homogeneous of degree 1, then if x and x’ can
produce y units of output it follows that tx and ¢x’ can produce ty units
of output, as depicted in Figure 1.7A. A homothetic function has almost
the same property: if x and x’ produce the same level of output, then ¢x
and tx’ can produce the same level of output—but it won’t necessarily be
t times as much as the original output. The isoquants for a homothetic
technology look just like the isoquants for a homogeneous technology, only
the output levels associated with the isoquants are different.

Homogeneous and homothetic technologies are of interest since they put
specific restrictions on how the technical rate of substitution changes as the
scale of production changes. In particular, for either of these functions the
technical rate of substitution is independent of the scale of production.

This follows immediately from the remarks in Chapter 26, page 482,
where we show that if f(x) is homogeneous of degree 1, then 8f(x)/0z, is
homogeneous of degree 0. It follows that the ratio of any two derivatives
is homogeneous of degree zero, which is the result we seek.

EXAMPLE: The CES production function

The constant elasticity of substitution or CES production function
has the form

y = [arzf + agzg]%.

It is easy to verify that the CES function exhibits constant returns to
scale. The CES function contains several other well-known production
functions as special cases, depending on the value of the parameter p. These
are described below and illustrated in Figure 1.8. In our discussion, it is
convenient to set the parameters a; = a; = 1.

FACTOR FACTOR
2 2

FACTOR 1 FACTOR 1 FACTOR 1
A B c

The CES production function. The CES production func-
tion takes on a variety of shapes depending on the value of the
parameter p. Panel A depicts the case where p = 1, panel B
the case where p = 0, and panel C the case where p = —oo0.

Figure
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(1) The linear production function (p = 1). Simple substitution yields

y=x1+ 22

(2) The Cobb-Douglas production function (p = 0). When p = 0 the CES
production function is not defined, due to division by zero. However, we
will show that as p approaches zero, the isoquants of the CES production
function look very much like the isoquants of the Cobb-Douglas production
function.

This is easiest to see using the technical rate of substitution. By direct

calculation,
1\t
TRS = - (—1> . (1.1)
T2

As p approaches zero, this tends to a limit of
TRS = -2,
I
which is simply the TRS for the Cobb-Douglas production function.

(3) The Leontief production function (p = —o0o). We have just seen that
the TRS of the CES production function is given by equation (1.1). As p
approaches —oo, this expression approaches

ros—(2) "=~ (2)”
To I

If z3 > z; the TRS is (negative) infinity; if o < z; the TRS is zero. This
means that as p approaches —oco, a CES isoquant looks like an isoquant
associated with the Leontief technology. Il

It will probably not surprise you to discover that the CES production
function has a constant elasticity of substitution. To verify this, note that
the technical rate of substitution is given by

p—1
TRS = — (ﬂ) ,

T2
so that " )
. =2 — |TRS|™=.
I
Taking logs, we see that
1
nZ2 _ In|TRS).
I —p
Applying the definition of o using the logarithmic derivative,
_ dln o / 1 1

T dm[TRS]  1-p
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Notes

The elasticity of substitution is due to Hicks (1932). For a discussion of
generalizations of the elasticity of substitution to the n-input case, see
Blackorby & Russell (1989) and the references cited therein. The elasticity
of scale is due to Frisch (1965).

Exercises

1.1. True or false? If V(y) is a convex set, then the associated production
set Y must be convex.

1.2. What is the elasticity of substitution for the general CES technology
y = (a12f + a2z5)/? when a; # a2?

1.3. Define the output elasticity of a factor i to be

_Of(x) =
“0) =, T

If f(x) = z%x3, what is the output elasticity of each factor?

1.4. If €(x) is the elasticity of scale and ¢,(x) is the output elasticity of
factor ¢, show that e(x) = 3" | €,(x).

1.5. What is the elasticity of scale of the CES technology, f(z1,z2) =
(af +25)7?

1.6. True or false? A differentiable function g(z) is a strictly increasing
function if and only if ¢’(z) > 0.

1.7. In the text it was claimed that if f(x) is a homothetic technology and x
and x’ produce the same level of output, then tx and #x’ must also produce
the same level of output. Can you prove this rigorously?

1.8. Let f(z1,z2) be a homothetic function. Show that its technical rate of
substitution at (x7,z2) equals its technical rate of substitution at (tz1,txz).

1.9. Consider the CES technology f(z1,z2) = [a12} + agzg]%. Show that
we can always write this in the form f(z,,xz2) = A(p){bzf + (1 — b)mg]%.

1.10. Let Y be a production set. We say that the technology is additive if
yinY and y' in Y implies that y +y' is in Y. We say that the technology
is divisible if y in ¥ and 0 < ¢ < 1 implies that ty is in Y. Show that
if a technology is both additive and divisible, then ¥ must be convex and
exhibit constant returns to scale.

<
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1.11. For each input requirement set determine if it is regular, monotonic,
and/or convex. Assume that the parameters a and b and the output levels
are strictly positive.

(a) V(y)
(b) V(y)
(c) V(y)

{z1,z2: az1 > logy, bry > logy}
{1, z2:az1 + bzy > y, 21 > 0}

{z1,22: 021 + \/T172 + b2 > y}

(d) V(y) = {z1,z9: a2 + bxy > y}
(e) V(y) = {z1,22:0:1(1 — y) > a,22(1 — y) > b}
(f) V(y) = {x1,z2:az1 — \/ZT173 + bz2 > y}

(&) Viy) ={z1,22: 21 + min(z1,z2) > 3y}



CHAPTER 2

PROFIT
MAXIMIZATION

Economic profit is defined to be the difference between the revenue a firm
receives and the costs that it incurs. It is important to understand that all
costs must be included in the calculation of profit. If a small businessman
owns a grocery store and he also works in the grocery, his salary as an
employee should be counted as a cost. If a group of individuals loans a
firm money in return for a monthly payment, these interest payments must
be counted as a cost of production.

Both revenues and costs of a firm depend on the actions taken by the
firm. These actions may take many forms: actual production activities,
purchases of factors, and purchases of advertising are all examples of actions
undertaken by a firm. At a rather abstract level, we can imagine that a firm
can engage in a large variety of actions such as these. We can write revenue
as a function of the level of operations of some n actions, R(ai,...,an),
and costs as a function of these same n activity levels, C{ai,...,a,).

A basic assumption of most economic analysis of firm behavior is that
a firm acts so as to maximize its profits; that is, a firm chooses actions
{(a1,...,ay,) so as to maximize R(a1,...,a,) — C(a1,...,a,). This is the
behavioral assumption that will be used throughout this book.
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Even at this broad level of generality, two basic principles of profit max-
imization emerge. The first follows from a simple application of calculus.
The profit maximization problem facing the firm can be written as

max R(ai,...,a,)—C(a1,...,a,).
Q1,eeyOp

A simple application of calculus shows that an optimal set of actions, a* =
(a1,...,a}), is characterized by the conditions

¥ 'n

dR(a*) _ 8C(a*)
00,1‘ o aa,‘

i=1,...,n.

The intuition behind these conditions should be clear: if marginal rev-
enue were greater than marginal cost, it would pay to increase the level of
the activity; if marginal revenue were less than marginal cost, it would pay
to decrease the level of the activity.

This fundamental condition characterizing profit maximization has sev-
eral concrete interpretations. For example, one decision the firm makes is
to choose its level of output. The fundamental condition for profit max-
imization tells us that the level of output should be chosen so that the
production of one more unit of output should produce a marginal revenue
equal to its marginal cost of production. Another decision of the firm is
to determine how much of a specific factor—say labor—to hire. The fun-
damental condition for profit maximization tells us that the firm should
hire an amount of labor such that the marginal revenue from employing
one more unit of labor should be equal to the marginal cost of hiring that
additional unit of labor.

The second fundamental condition of profit maximization is the condition
of equal long-run profits. Suppose that two firms have identical revenue
functions and cost functions. Then it is clear that in the long run the
two firms cannot have unequal profits—since each firm could imitate the
actions of the other. This condition is very simple, but its implications are
often surprisingly powerful.

In order to apply these conditions in a more concrete way, we need to
break up the revenue and cost functions into more basic parts. Revenue is
composed of two parts: how much a firm sells of various outputs times the
price of each output. Costs are also composed of two parts: how much a
firm uses of each input times the price of each input.

The firm’s profit maximization problem therefore reduces to the problem
of determining what prices it wishes to charge for its outputs or pay for its
inputs, and what levels of outputs and inputs it wishes to use. Of course, it
cannot set prices and activity levels unilaterally. In determining its optimal
policy, the firm faces two kinds of constraints: technological constraints and
market constraints. N
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Technological constraints are simply those constraints that concern
the feasibility of the production plan. We have examined ways to descnbe
technological constraints in the previous chapter.

Market constraints are those constraints that concern the effect of
actions of other agents on the firm. For example, the consumers who
buy output from the firm may only be willing to pay a certain price for
a certain amount of output; similarly, the suppliers of a firm may accept
only certain prices for their supplies of inputs.

When the firm determines its optimal actions, it must take into account
both sorts of constraints. However, it is convenient to begin by examining
the constraints one at a time. For this reason the firms described in the
following sections will exhibit the simplest kind of market behavior, namely
that of price-taking behavior. Each firm will be assumed to take prices
as given, exogenous variables to the profit-maximizing problem. Thus, the
firm will be concerned only with determining the profit-maximizing levels
of outputs and inputs. Such a price-taking firm is often referred to as a
competitive firm.

The reason for this terminology will be discussed later on; however, we
can briefly indicate here the kind of situation where price-taking behavior
might be an appropriate model. Suppose we have a collection of well-
informed consumers who are buying a homogeneous product that is pro-
duced by a large number of firms. Then it is reasonably clear that all firms
must charge the same price for their product—any firm that charged more
than the going market price for its product would immediately lose all of
its customers. Hence, each firm must take the market price as given when
it determines its optimal policy. In this chapter we will study the optimal
choice of production plans, given a configuration of market prices.

2.1 Profit maximization

Let us consider the problem of a firm that takes prices as given in both its
output and its factor markets. Let p be a vector of prices for inputs and
outputs of the firm.! The profit maximization problem of the firm can be
stated as
7(p) = max py
such that y is in Y.

Since outputs are measured as positive numbers and inputs are measured
as negative numbers, the objective function for this problem is profits:

revenues minus costs. The function 7(p), which gives us the maximum
profits as a function of the prices, is called the profit function of the firm.

1 In general we will take prices to be row vectors and quantities to be column vectors.
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There are several useful variants of the profit function. For example,
if we are considering a short-run maximization problem, we might define
the short-run profit function, also known as the restricted profit
function:

7(p, z) = max py
such that y is in Y (z).

If the firm produces only one output, the profit function can be written
as
m(p,w) = max pf(x) — wx

where p is now the (scalar) price of output, w is the vector of factor prices,
and the inputs are measured by the (nonnegative) vector x = (z1,...,2).
In this case we can also define a variant of the restricted profit function,
the cost function

c(w,y) = min wx
such that x is in V(y).

In the short run, we may want to consider the restricted or short-run
cost function:

c(w,y,2) = min wx
such that (y, —x) is in Y (z).

The cost function gives the minimum cost of producing a level of output
y when factor prices are w. Since only the factor prices are taken as
exogenous in this problem, the cost function can be used to describe firms
that are price takers in factor markets but do not take prices as given in
the output markets. This observation will prove useful in our study of
monopoly.

Profit-maximizing behavior can be characterized by calculus. For ex-
ample, the first-order conditions for the single output profit maximization

problem are
paf =)

oz,

This condition simply says that the value of the marginal product of each
factor must be equal to its price. Using vector notation, we can also write
these conditions as

=w, t1=1,---,n.

pDf(x*) = w.

Here

o - (25, 5)

is the gradient of f: the vector of partial derivatives of f with respect to
each of its arguments.

“
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The first-order conditions state that the “value marginal product of each
factor must be equal to its price.” This is just a special case of the opti-
mization rule we stated earlier: that the marginal revenue of each action
be equal to its marginal cost.

This first-order condition can also be exhibited graphically. Consider the
production possibilities set depicted in Figure 2.1. In this two-dimensional
case, profits are given by II = py — wx. The level sets of this function
for fixed p and w are straight lines which can be represented as functions
of the form: y = II/p + (w/p)z. Here the slope of the isoprofit line gives
the wage measured in units of output, and the vertical intercept gives us
profits measured in units of output.

OUTPUT ' T =py - wx

Slope = wip Y=o

IVp

INPUT

Profit maximization. The profit-maximizing amount of in-
put occurs where the slope of the isoprofit line equals the slope
of the production function.

A profit-maximizing firm wants to find a point on the production set
with the maximal level of profits—this is a point where the vertical axis
intercept of the associated isoprofit line is maximal. By inspection it can
be seen that such an optimal point can be characterized by the tangency
condition .

o df(z?) _w

dz p

In this two-dimensional case it is easy to see the appropriate second-order
condition for profit maximization, namely that the second derivative of the
production function with respect to the input must be nonpositive:

d2 *
f(ﬂ; ) <o

dz

Geometrically, this means that at a point of maximal profits the production
function must lie below its tangent line at z*; i.e., it must be “locally

Figure
2.1



28 PROFIT MAXIMIZATION (Ch. 2)

concave.” It is often useful to assume that the second derivative will be
strictly negative.

A similar second-order condition holds in the multiple-input case. In
this case the second-order condition for profit maximization is that the
matrix of second derivatives of the production function must be negative
semidefinite at the optimal point; that is, the second-order condition
requires that the Hessian matrix

must satisfy the condition that hD? f(x*)h* < 0 for all vectors h. (The
superscript ¢ indicates the transpose operation.) Note that if there is only
a single input, the Hessian matrix is a scalar and this condition reduces to
the second-order condition we examined earlier for the single-input case.

Geometrically, the requirement that the Hessian matrix is negative semi-
definite means that the production function must be locally concave in the
neighborhood of an optimal choice—that is, the production function must
lie below its tangent hyperplane.

In many applications we will be concerned with the case of a regular
maximum, so that the relevant condition to check is whether the Hessian
matrix is negative definite. In Chapter 26, page 476, we show that a nec-
essary and sufficient test for this is that the leading principal minors of
the Hessian must alternate in sign. This algebraic condition is sometimes
useful for checking second-order conditions, as we will see below.

2.2 Difficulties

For each vector of prices (p,w) there will in general be some optimal
choice of factors x*. The function that gives us the optimal choice of
inputs as a function of the prices is called the factor demand function
of the firm. This function is denoted by x(p, w). Similarly, the function
y(p,w) = f(x(p,w)) is called the supply function of the firm. We will
often assume that these functions are well-defined and nicely behaved, but
it is worthwhile considering problems that may arise if they aren’t.

First, it may happen that the technology cannot be described by a dif-
ferentiable production function, so that the derivatives described above are
inappropriate. The Leontief technology is a good example of this problem.

Second, the calculus conditions derived above make sense only when
the choice variables can be varied in an open neighborhood of the optimal
choice. In many economic problems the variables are naturally nonnegative;
and if some variables have a value of zero at the optimal choice, the calculus
conditions described above may be inappropriate. The above conditions are
valid only for interior solutions—where each of the factors is used in a
positive amount.
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The necessary modifications of the conditions to handle boundary so-
lutions are not difficult to state. For example, if we constrain x to be
nonnegative in the profit maximization problem, the relevant first-order
conditions turn out to be

-

paf(x) —w, <0 ifz;=0
8$i

p____@f(x) -w; =0 ifz;>0.
6:1:.-

Thus the marginal profit from ificreasing z; must be nonpositive, oth-
erwise the firm would increase z;. If ; = 0, the marginal profit from
increasing x; may be negative—which is to say, the firm would like to de-
crease z;. But since z; is already zero, this is impossible. Finally, if ¢; > 0
so that the nonnegativity constraint is not binding, we will have the usual
conditions for an interior solution.

Cases involving nonnegativity constraints or other sorts of inequality
constraints can be handled formally by means of the Kuhn-Tucker Theorem
described in Chapter 27, page 503. We will present some examples of the
application of this theorem in the chapter on cost minimization.

The third problem that can arise is that there may exist no profit-
maximizing production plan. For example, consider the case where the
production function is f(x) = z so that one unit of z produces one unit of
output. It is not hard to see that for p > w no profit-maximizing plan will
exist. If you want to maximize pz — wz when p > w, you would want to
choose an indefinitely large value of z. A maximal profit production plan
will exist for this technology only when p < w, in which case the maximal
level of profits will be zero.

In fact, this same phenomenon will occur for any constant-returns-to-
scale technology. To demonstrate this, suppose that we can find some
(p, w) where optimal profits are strictly positive so that

pf(x*) —wx*=71">0.

Suppose that we scale up production by a factor £ > 1; our profits will now
be
pf(tx*) — wix* = t[pf(x*) — wx*| = tn* > 7*.

This means that, if profits are ever positive, they can be made larger—
hence, profits are unbounded and no maximal profit production plan will
exist in this case.

It is clear from this example that the only nontrivial profit-maximizing
position for a constant-returns-to-scale firm is one involving zero profits.
If the firm is producing some positive level of output and it makes zero
profits, then it is indifferent about the level of output at which it produces.
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This brings up the fourth difficulty: even when a profit-maximizing pro-
duction plan exists, it may not be unique. If (y,x) yields maximal profits
of zero for some constant returns technology, then (ty,tx) will also yield
zero profits and will therefore also be profit-maximizing. In the case of
constant returns to scale, if there exists a profit-maximizing choice at some
(p,w) at all, there will typically be a whole range of production plans that
are profit-maximizing,.

EXAMPLE: The profit function for Cobb-Douglas technology

Consider the problem of maximizing profits for the production function of
the form f(z) = z® where a > 0. The first-order condition is

a—1 __
pax =w,

and the second-order condition reduces to

pa(a— 1)z 2 <0.

The second-order condition can only be satisfied when a < 1, which means
that the production function must have constant or decreasing returns to
scale for competitive profit maximization to be meaningful.

Ifa= 1, the first-order condition reduces to p = w. Hence, when w = p
any value of z is a profit-maximizing choice. When a < 1, we use the
first-order condition to solve for the factor demand function

W\ T
T (pa w) - ( ap) .

The supply function is given by

&

y(p,w) = fz(p,w)) = (:’—p) o,

and the profit function is given by

a

w(pw) = pulp, ) —walp) =u (122) (2)7.
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2.3 Properties of demand and supply functions

The functions that give the optimal choices of inputs and outputs as a func-
tion of the prices are known as the factor demand and output supply
functions. The fact that these functions are the solutions to a maximiza-
tion problem of a specific form, the profit maximization problem, will imply
certain restrictions on the behavior of the demand and supply functions.
For example, it is easy to see that if we multiply all of the prices by some
positive number ¢, the vector of factor inputs that maximizes profits will
not change. (Can you prove this rigorously?) Hence, the factor demand
functions z,(p, w) for i = 1,-- -, n must satisfy the restriction that

z;(tp, tw) = z,(p, w).

In other words the factor demand functions must be homogeneous of degree
zero. This property is an important implication of profit-maximizing be-
havior: an immediate way to check whether some observed behavior could
come from the profit-maximizing model is to see if the demand functions
are homogeneous of degree zero. If they aren’t, the firm in question couldn’t
possibly be maximizing profits.

We would like to find other such restrictions on demand functions. In
fact, we would like to find a complete list of such restrictions. We could
use such a list in two ways. First, we could use it to examine theoretical
statements about how a profit-maximizing firm would respond to changes
in its economic environment. An example of such a statement would be:
“If all prices are doubled, the levels of goods demanded and supplied by a
profit-maximizing firm will not change.” Second, we could use such restric-
tions empirically to decide whether a particular firm’s observed behavior is
consistent with the profit maximization model. If we observed that some
firm’s demands and supplies changed when all prices doubled and nothing
else changed, we would have to conclude (perhaps reluctantly) that this
firm was not a profit maximizer.

Thus both theoretical and empirical considerations suggest the impor-
tance of determining the properties that demand and supply functions pos-
sess. We will attack this problem in three ways. The first way is by exam-
ining the first-order conditions that characterize the optimal choices. The
second approach is to examine the maximizing properties of the demand
and supply functions directly. The third way is to examine the properties
of the profit and cost functions and relate these properties to the demand
functions. This approach is sometimes referred to as the “dual approach.”
Each of these methods of examining optimizing behavior is useful for other
sorts of problems in economics, and the manipulations involved should be
carefully studied.

Economists refer to the study of how an economic variable responds to
changes in its environment as comparative statics. For example, we
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could ask how the supply of output of a profit-maximizing firm responds
to a change in the output price. This would be part of a study of the
comparative statics of the supply function.

The term comparative refers to comparing a “before” and an “after”
situation. The term statics refers to the idea that the comparison is made
after all adjustments have been “worked out;” that is, we must compare
one equilibrium situation to another.

The term “comparative statics” is not especially descriptive, and it seems
to be used only by economists. A better term for this sort of analysis
would be sensitivity analysis. This has the additional advantage that
this term is used in other fields of study. However, the comparative statics
terminology is the traditional one in economics and seems so embedded in
economic analysis that it would be futile to attempt to change it.

2.4 Comparative statics using the first-order conditions

Let us first consider the simple example of a firm maximizing profits with
one output and one input. The problem facing the firm is

max pf(z) — wez.

If f(z) is differentiable, the demand function z(p, w) must satisfy the
necessary first-order and second-order conditions

pf'(z(p,w)) —w=0
pf" (z(p,w)) < 0.

Notice that these conditions are an identity in p and w. Since z(p,w)
is by definition the choice that maximizes profits at (p,w), z(p, w) must
satisfy the necessary conditions for profit maximization for all values of p
and w. Since the first-order condition is an identity, we can differentiate it
with respect to w, say, to get

pf"alp,u) P2 1 =g,

Assuming that we have a regular maximum so that f”(z) is not zero, we
can divide through to get
dz(p, w) _ 1
dw  pf'(z(p,w))’

(2.1)

This identity tells us some interesting facts about how the factor demand
z(p, w) responds to changes in w. First, it gives us an explicit expression
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for dz/dw in terms of the production function. If the production func-
tion is very curved in a neighborhood of the optimum—so that the second
derivative is large in magnitude—then the change in factor demand as the
factor price changes will be small. (You might draw a diagram similar to
Figure 2.1 and experiment a bit to verify this fact.)

Second, it gives us important information about the sign of the deriva-
tive: since the second-order condition for maximization implies that the
second derivative of the production function, f”(z(p, w)), is negative, equa-
tion (2.1) implies that dr(p,w)/dw is negative. In other words: the factor
demand curve slopes downward.

This procedure of differentiating the first-order conditions can be used to
examine profit-maximizing behavior when there are many inputs. Let us
consider for simplicity the case of two inputs. For notational convenience
we will normalize p = 1 and just look at how the factor demands behave
with respect to the factor prices. The factor demand functions must satisfy
the first-order conditions

Of (z1 (w1, wp), z2(wr, w2)) _
h N 61'1 -
Of (z1 (w1, wa), T2(w1, wa))
8:1:2
Differentiating with respect to w;, we have

o oz
f11 o1 f12—‘—2=1

3 13}
fm—w—1 +f22£ =0.

u

= was.

Differentiating with respect to wq, we have

1) o
f11 2 f12ﬂ=0

6 6
f21ﬂ+f22 °2 1.

Writing these equations in matrix form ylelds
Jzy Oz
(fu ‘1;13) 56101 ng _ (1 0)
22 Z z 0 1)’
fa Gt G2
Let us assume that we have a regular maximum. This means that the Hes-
sian matrix is strictly negative definite, and therefore nonsingular. (This

assumption is analogous to the assumption that f”(z) < 0 in the one-
dimensional case.) Solving for the matrix of first derivatives, we have

FZ) Jé; -
gi%]{ g%ut _ (fu flz) !
a_x_z_ 579;22' far fa2
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The matrix on the left of this last equation is known as a substitution
matrix since it describes how the firm substitutes one input for another
as the factor prices change. According to our calculation, the substitu-
tion matrix is simply the inverse of the Hessian matrix. This has several
important implications.

Recall that the second-order condition for (strict) profit maximization is
that the Hessian matrix is a symmetric negative definite matrix. It is a
standard result of linear algebra that the inverse of a symmetric negative
definite matrix is a symmetric negative definite matrix. This means that
the substitution matrix itself must be a symmetric, negative definite matrix.
In particular:

1) dz,/0w, < 0, for ¢ = 1,2, since the diagonal entries of a negative
definite matrix must be negative.

2) 0z,/0w, = Oz,/0w, by the symmetry of the matrix.

Although it is quite intuitive that the factor demand curves should have
a negative slope, the fact that the substitution matrix is symmetric is not
very intuitive. Why should the change in a firm’s demands for good ¢ when
price j changes necessarily be equal to the change in the firm’s demand
for good j when price ¢ changes? There is no obvious reason ...but it is
implied by the model of profit-maximizing behavior.

The same sorts of calculations can be made for an arbitrary number of in-
puts. Normalizing p = 1, the first-order conditions for profit maximization
are

Df(x(w))—w=0.

If we differentiate with respect to w, we get
D?f(x(w))Dx(w) —I=0.

Solving this equation for the substitution matrix, we find
Dx(w) = [Df(x(w))] -

Since D? f(x(w)) is a symmetric negative definite matrix, the substitution
matrix Dx(w) is a symmetric negative definite matrix. This formula is,
of course, a natural analog of the one-good and two-good cases described
above.

What is the empirical content of the statement that the substitution ma-
trix is negative semidefinite? We can provide the following interpretation.
Suppose that the vector of factor prices change from w to w + dw. Then
the associated change in the factor demands is

dx = Dx(w)dw®. -
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Multiplying both sides of this equation by dw yields
dw dx = dwDx(w)dw’ < 0.

The inequality follows from the definition of a negative semidefinite matrix.
We see that negative semidefiniteness of the substitution matrix means that
the inner product of the change in factor prices and the change in factor
demands must always be nonpositive, at least for infinitesimal changes in
factor prices. If, for example, the price of the i** factor increases, and
no other prices change, it follows that the demand for the it* factor must
decrease. In general, the change in quantities, dx, must make an obtuse
angle with the change in prices, dw. Roughly speaking, the direction of
the quantity change must be more-or-less “opposite” the direction of the
price change.

2.5 Comparative statics using algebra

In this section we will examine the consequences of profit-maximizing be-
havior that follow directly from the definition of maximization itself. We
will do this in a slightly different setting than before. Instead of taking the
behavior of the firm as being described by its demand and supply func-
tions, we will think of just having a finite number of observations on a
firm’s behavior. This allows us to avoid some tedious details invoived in
taking limits and gives us a more realistic setting for empirical analysis.
(Who has ever had an infinite amount of data anyway?)

Thus, suppose that we are given a list of observed price vectors pt, and
the associated net output vectors y?, for t = 1,...,T. We refer to this
collection as the data. In terms of the net supply functions we described
before, the data are just (p?,y(p’)) for some observations t =1,...,T.

The first question we will ask is what the model of profit maximization
implies about the set of data. If the firm is maximizing profits, then the
observed net output choice at price p* must have a level of profit at least as
great as the profit at any other net output the firm could have chosen. We
don’t know all the other choices that are feasible in this situation, but we
do know some of them—namely, the other choices y*® for s = 1,...,T that
we have observed. Hence, a necessary condition for profit maximization is
that

p'y' >ply°forallt ands=1,...,T.

We will refer to this condition as the Weak Axiom of Profit Maximiza-
tion (WAPM).

In Figure 2.2A we have drawn two observations that wviolate WAPM,
while Figure 2.2B depicts two observations that satisfy WAPM.
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A B
"OUTPUT OUTPUT

INPUT INPUT

WAPM. Panel A shows two observations that violate WAPM,
since p'y? > ply!. Panel B shows two observations that satisfy
WAPM.

WAPM is a simple, but very useful, condition; let us derive some of its
consequences. Fix two observations t and s, and write WAPM for each
one. We have s

Py -vy°)=0

-p*(y' ~vy") 0.
Adding these two inequalities gives us

® -p)y' —y°) 20.

Letting Ap = (p* —p®) and Ay = (y* — y*), we can rewrite this expression
as
ApAy > 0. (2.2)

In other words, the wnner product of a vector of price changes with the
associated vector of changes in net outputs must be nonnegative.

For example, if Ap is the vector (1,0,...,0), then this inequality implies
that Ay; must be nonnegative. If the first good is an output good for
the firm, and thus a positive number, then the supply of that good cannot
decrease when its price rises. On the other hand, if the first good is an input
for the firm, and thus measured as a negative number, then the demand
for that good must not increase when its price goes up.

Of course, equation {2.2) is simply a “delta” version of the infinitesimal
inequality derived in the previous section. But it is stronger in that it
applies for all changes in prices, not just infinitesimal changes. Note that
(2.2) follows directly from the definition of profit maximization and that
no regularity assumptions about the technology are necessary.

2.6 Recoverability

Does WAPM exhaust all of the implications of profit-maximizing behavior,
or are there other useful conditions implied by profit maximization? One
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way to answer this question is to try to construet a technology that gen-
erates the observed behavior (p!,y?) as profit-maximizing behavior. If we
can find such a technology for any set of data that satisfy WAPM, then
WAPM must indeed exhaust the implications of profit-maximizing behav-
ior. We refer to the operation of constructing a technology consistent with
the observed choices as the operation of recoverability.

We will show that if a set of data satisfies WAPM it is always possible
to find a technology for which the observed choices are profit-maximizing
choices. In fact, it is always possible to find a production set Y that is
closed and convex. The remainder of this section will sketch the proof of
this assertion.

Our task is to construct a production set that will generate the observed
choices (pt,yt) as profit-maximizing choices. We will actually construct
two such production sets, one that serves as an “inner bound” to the true
technology and one that serves as an “outer bound.” We start with the
inner bound.

Suppose that the true production set Y is convex and monotonic. Since
Y must contain y® for ¢t = 1,...,T, it is natural to take the inner bound to
be the smallest convex, monotonic set that contains y!,...,yt. This set is
called the convex, monotonic hull of the points y!,...,yT and is denoted
by )

YI = convex, monotonic hull of {y* : ¢t = 1,---,T}

The set YI is depicted in Figure 2.3A.

ouTPUT ouTPUT

INPUT

The sets YI and YO. The set YT is the smallest convex,
monotonic set that could be a production set consistent with
the data. The set YO is the largest convex, monotonic set that
could be a production set consistent with the data.

It is easy to show that for the technology YI, y* is a profit-maximizing
choice at prices pt. All we have to do is to check that for all ¢,

plyt >plyforallyinYl. -

Figure
2.3
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Suppose that this is not the case. Then for some observation ¢, pty! <
pty for some y in YI. But inspecting the diagram shows that there must
then exist some observation s such that p'y? < pty®. But this inequality
violates WAPM.

Thus the set Y I rationalizes the observed behavior in the sense that it
is one possible technology that could have generated that behavior. It is
not hard to see that YI must be contained in any convex technology that
generated the observed behavior: if Y generated the observed behavior and
it is convex, then it must contain the observed choices y* and the convex
hull of these points is the smallest such set. In this sense, YI gives us an
“inner bound” to the true technology that generated the observed choices.

It is natural to ask if we can find an outer bound to this “true” technology.
That is, can we find a set YO that is guaranteed to contain any technology
that is consistent with the observed behavior? €

The trick to answering this question is to rule out all of the points that
couldn’t possibly be in the true technology and then take everything that
is left over. More precisely, let us define NOTY by

NOTY = {y: p'y > p'y* for some t}.

NOTY consists of all those net output bundles that yield higher profits
than some observed choice. If the firm is a profit maximizer, such bundles
couldn’t be technologically feasible; otherwise they would have been chosen.
Now as our outer bound to Y we just take the complement of this set:

YO={y:pty§ptyt forallt=1,---,T}.

The set YO is depicted in Figure 2.3B.

In order to show that YO rationalizes the observed behavior we must
show that the profits at the observed choices are at least as great as the
profits at any other y in YO. Suppose not. Then there is some y* such
that pty? < p'y for some y in YO. But this contradicts the definition of
Y O given above.

It is clear from the construction of YO that it must contain any produc-
tion set consistent with the data (y*). Hence, YO and YT form the tightest
inner and outer bounds to the true production set that generated the data.

Notes

For more on comparative statics methodology, see Silberberg (1974) and
Silberberg (1990). The algebraic approach described here was inspired
by Afriat (1967) and Samuelson (1947); for further development see Var-
ian (1982b).



Exercises 39

Exercises

2.1. Use the Kuhn-Tucker theorem to derive conditions for profit maximiza-
tion and cost minimization that are valid even for boundary solutions, i.e.,
when some factor is not used.

2.2. Show that a profit-maximizing bundle will typically not exist for a
technology that exhibits increasing returns to scale as long as there is some
point that yields a positive profit. ’

2.3. Calculate explicitly the profit function for the technology y = z%, for
0 < a < 1 and verify that it is homogeneous and convex in {p, w).

2.4. Let f(z1,z2) be a production function with two factors and let w; and
wq be their respective prices. Show that the elasticity of the factor share
(waa/wiz1) with respect to (z1/z2) is given by 1/o — 1.

2.5. Show that the elasticity of the factor share with respect to (wq/w,) is
1-o0.

2.6. Let (pt,y?) for t = 1,...,T be a set of observed choices that satisfy
WAPM, and let YI and YO be the inner and outer bounds to the true
production set Y. Let 7t (p) be the profit function associated with YO
and 7~ (p) be the profit function associated with YI, and 7(p) be the profit
function associated with Y. Show that for all p, 7+ (p) > n(p) > 7~ (p).

2.7. The production function is f(z) = 20z — 22 and the price of output is
normalized to 1. Let w be the price of the x-input. We must have = > 0.

(a) What is the first-order condition for profit maximization if z > 0?7
(b) For what values of w will the optimal z be zero?

(c) For what values of w will the optimal z be 107

(d) What is the factor demand function? _

(e) What is the profit function?

(f) What is the derivative of the profit function with respect to w?



CHAPTER 3

PROFIT
FUNCTION

Given any production set Y, we have seen how to calculate the profit
function, n(p), which gives us the maximum profit attainable at prices
p. The profit function possesses several important properties that follow
directly from its definition. These properties are very useful for analyzing
profit-maximizing behavior.

Recall that the profit function is, by definition, the maximum profits the
firm can make as a function of the vector of prices of the net outputs:

7(p) = max py
such that y isin Y.

From the viewpoint of the mathematical results that follow, what is im-
portant is that the objective function in this problem is a linear function
of prices.

3.1 Properties of the profit function

We begin by outlining the properties of the profit function. It is important
to recognize that these properties follow solely from the assumption of
profit maximization. No assumptions about convexity, monotonicity, or
other sorts of regularity are necessary.
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Properties of the profit function.

1) Nondecreasing in output prices, nonincreasing in input prices. Ifp, > p,
for all outputs and p), < p, for all wnputs, then m(p’) > m(p).

2) Homogeneous of degree 1 in p. n(tp) = tn(p) for all t > 0.

8) Convez in p. Let p"” = tp + (1 —t)p’ for 0 <t < 1. Then n(p”) <
tr(p) + (1 —t)m(p’).

4) Continuous in p. The function n(p) s continuous, at least when w(p)
is well-defined and p; > 0 fori=1,...,n.

Proof. We emphasize once more that the proofs of these properties follow
from the definition of the profit function alone and do not rely on any
properties of the technology. .

1) Let y be a profit-maximizing net output vector at p, so that 7(p) = py
and let y’ be a profit-maximizing net output vector at p’ so that =(p’) =
p'y’. Then by definition of profit maximization we have p’y’ > p’y. Since
pi > p, for all ¢ for which y, > 0 and p, < p, for all i for which y, < 0,
we also have p’'y > py. Putting these two inequalities together, we have
n(p’) = p'y’ > py = 7(p), as required.

2) Let y be a profit-maximizing net output vector at p, so that py > py’
for all y’ in Y. It follows that for t > 0, tpy > tpy’ for all y’ in Y. Hence
y also maximizes profits at prices tp. Thus n(tp) = tpy = tm(p).

3) Let y maximize profits at p. y’ maximize profits at p’, and y” maximize
profits at p”. Then we have

7l_(pII) —_ pIIyII — (tp + (1 _ t)pl)y/l — tpy/, + (1 _ t)ply,l. (3-1)_
By the definition of profit maximization, we know that

tpy” < tpy = tr(p)
(1-t)p'y" < (1-t)p'y’ = (1 - t)n(p’).

Adding these two inequalities and using (3.1), we have
m(p") < tn(p) + (1 — ) (p’),
as required.

4) The continuity of =(p) follows from the Theorem of the Maximum de-
scribed in Chapter 27, page 506. i
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The facts that the profit function is homogeneous of degree 1 and increas-
ing in output prices are not terribly surprising. The convexity property,
on the other hand, does not appear to be especially intuitive. Despite this
appearance there is a sound economic rationale for the convexity result,
which turns out to have very important consequences.

Consider the graph of profits versus the price of a single output good,
with the factor prices held constant, as depicted in Figure 3.1. At the
price vector (p*, w*) the profit-maximizing production plan (y*,x*) yields
profits p*y* —w*x*. Suppose that p increases, but the firm continues to use
the same production plan (y*,x*). Call the profits yielded by this passive
behavior the “passive profit function” and denote it by II(p) = py* — w*x*.
This is easily seen to be a straight line. The profits from pursuing an
optimal policy must be at least as large as the profits from pursuing the
passive policy, so the graph of 7(p) must lie above the graph of II{p). The
same argument can be repeated for any price p, so the profit function must
lie above its tangent lines at every point. It follows that «(p) must be a
convex function.

PROFITS n(p)

[I(p) = py" — w'x*

(0 ) I

I
|
1
i
/ o OUTPUT PRICE

The profit function. As the output price increases, the profit
function increases at an increasing rate.

The properties of the profit function have several uses. At this point
we will satisfy ourselves with the observation that these properties offer
several observable implications of profit-maximizing behavior. For example,
suppose that we have access to accounting data for some firm and observe
that when all prices are scaled up by some factor ¢ > 0 profits do not
scale up proportionally. If there were no other apparent changes in the
environment, we might suspect that the firm in question is not maximizing
profits.
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EXAMPLE: The effects of price stabilization

Suppose that a competitive industry faces a randomly fluctuating price for
its output. For simplicity we imagine that the price of output will be p;
with probability ¢ and p, with probability (1 — ¢). It has been suggested
that it may be desirable to stabilize the price of output at the average price
P = qp1 + (1 — ¢)p2. How would this affect profits of a typical firm in the
industry?

We have to compare average profits when p fluctuates to the profits at
the average price. Since the profit function is convex,

gr(p1) + (1 = @)n(pz) > m(gp1 + (1 — q)p2) = =(p).

Thus average profits with a fluctuating price are at least as large as with a
stabilized price.

At first this result seems counterintuitive, but when we remember the
economic reason for the convexity of the profit function it becomes clear.
Each firm will produce more output when the price is high and less when
the price is low. The profit from doing this will exceed the profits from
producing a fixed amount of output at the average price.

3.2 Supply and demand functions from the profit function

If we are given the net supply function y(p), it is easy to calculate the
profit function. We just substitute into the definition of profits to find

7(p) = py(p)-

Suppose that instead we are given the profit function and are asked to find
the net supply functions. How can that be done? It turns out that there
is a very simple way to solve this problem: just differentiate the profit
function. The proof that this works is the content of the next proposition.

Hotelling’s lemma. (The derwatwe property) Let y,(p) be the firm’s
net supply function for good i. Then

yl(p):aﬂl—(l)) fori=1,...,n,

Op,

assumng that the derwatwe erists and that p, > 0.

Proof. Suppose (y*) is a profit-maximizing net output vector at prices
(p*). Then define the function

g(p) =7(p) - py".
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Clearly, the profit-maximizing production plan at prices p will always be
at least as profitable as the production plan y*. However, the plan y*
will be a profit-maximizing plan at prices p*, so the function g reaches a
minimum value of 0 at p*. The assumptions on prices imply this is an
interior minimum.

The first-order conditions for a minimum then imply that

9g(p*) _ 0n(p”) _
apz alh

yy =0fori=1,...,n.
Since this is true for all choices of p*, the proof is done. Il

The above proof is just an algebraic version of the relationships depicted
in Figure 3.1. Since the graph of the “passive” profit line lies below the
graph of the profit function and coincides at one point, the two lines must
be tangent at that point. But this implies that the derivative of the profit
function at p* must equal the profit-maximizing factor supply at that price:
y(p*) = om(p*)/0Op.

The argument given for the derivative property is convincing (I hope!)
but it may not be enlightening. The following argument may help to see
what is going on.

Let us consider the case of a single output and a single input. In this
case the first-order condition for a maximum profit takes the simple form

df (z) _
o p—d—x— —w=0. (32)

The factor demand function z(p, w) must satisfy this first-order condition.
The profit function is given by

7T(p, w) = pf(x(pv w)) - ’UJCL’(p, w)
Differentiating the profit function with respect to w, say, we have

on M_a_m—w%*z(?w)

dw —P oz ow ow

of(z(p,w)) Oz
oz v

D 55 —Ilf(p,’U))-

Substituting from (3.2), we see that

on
5&; - —-$(p, w)

The minus sign comes from the fact that we are increasing the price of an
input-—so profits must decrease.
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This argument exhibits the economic rationale behind Hotelling’s lemma.
When the price of an output increases by a small amount there will be two
effects. First, there is a direct effect: because of the price increase the firm
will make more profits, even if it continues to produce the same level of
output.

But secondly, there will be an indirect effect: the increase in the output
price will induce the firm to change its level of output by a small amount.
However, the change in profits resulting from any infinitesimal change in
output must be zero since we are already at the profit-maximizing produc-
tion plan. Hence, the impact of the indirect effect is zero, and we are left
only with the direct effect.

3.3 The envelope theorem

The derivative property of the profit function is a special case of a more
general result known as the envelope theorem, described in Chapter 27,
page 491. Consider an arbitrary maximization problem where the objective
function depends on some parameter a:

M(a) = max f(z,a).

The function M (a) gives the maximized value of the objective function as
a function of the parameter a. In the case of the profit function a would
be some price, £ would be some factor demand, and M(a) would be the
maximized value of profits as a function of the price.

Let z(a) be the value of z that solves the maximization problem. Then
we can also write M(a) = f(z(a),a). This simply says that the optimized
value of the function is equal to the function evaluated at the optimizing
choice.

It is often of interest to know how M(a) changes as a changes. The
envelope theorem tells us the answer:

dM(a) _ 0f(z,a)
da N da rz=x(a) )

This expression says that the derivative of M with respect to a is given by
the partial derivative of f with respect to a, holding x fized at the optimal
choice. This is the meaning of the vertical bar to the right of the derivative.
The proof of the envelope theorem is a relatively straightforward calculation
given in Chapter 27, page 491. (You should try to prove the result yourself
before you look at the answer.)

Let’s see how the envelope theorem works in the case of a simple one-
input, one-output profit maximization problem. The profit maximization
problem is

r(p, w) = max pf(a) - wa.
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The a in the envelope theorem is p or w, and M(a) is 7(p,w). According to
the envelope theorem, the derivative of w(p, w) with respect to p is simply
the partial derivative of the objective function, evaluated at the optimal

choice:

on(p,w)
—"a-p“" = f(z)

= f(z(p,w))-
z=x(p,w)
This is simply the profit-maximizing supply of the firm at prices (p,w).
Similarly,
on(p,w)
ow

which is the profit-maximizing net supply of the factor.

= —z(p,w),

z=z(p,w)

3.4 Comparative statics using the profit function

At the beginning of this chapter we proved that the profit function must
satisfy certain properties. We have just seen that the net supply functions
are the derivatives of the profit function. It is of interest to see what
the properties of the profit function imply about the properties of the net
supply functions. Let us examine the properties one by one.

First, the profit function is a monotonic function of the prices. Hence,
the partial derivative of w(p) with respect to price ¢ will be negative if
good ¢ is an input and positive if good ¢ is an output. This is simply the
sign convention for net supplies that we have adopted.

Second, the profit function is homogeneous of degree 1 in the prices. We
have seen that this implies that the partial derivatives of the profit function
must be homogeneous of degree 0. Scaling all prices by a positive factor ¢
won’t change the optimal choice of the firm, and therefore profits will scale
by the same factor ¢.

Third, the profit function is a convex function of p. Hence, the matrix
of second derivatives of m with respect to p—the Hessian matrix—must
be a positive semidefinite matrix. But the matrix of second derivatives of
the profit function is just the matrix of first derivatives of the net supply
functions. In the two-good case, for example, we have

& Fr Ay, Oy
o oo | _ (5 Ops
&r &*r g_y_z O0ya
p10p2  Opk p1  Op2

The matrix on the right is just the substitution matrix—how the net supply
of good i changes as the price of good j changes. It follows from the
properties of the profit function that this must be a symmetric, positive
semidefinite matrix.
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The fact that the net supply functions are the derivatives of the profit
function gives us a handy way to move between properties of the profit
function and properties of the net supply functions. Many propositions
about profit-maximizing behavior become much easier to derive by using
this relationship.

EXAMPLE: The LeChatelier principle

Let us consider the short-run response of a firm’s supply behavior as com-
pared to the long-run response. It seems plausible that the firm will re-
spond more to a price change in the long run since, by definition, it has
more factors to adjust in the long run than in the short run. This intuitive
proposition can be proved rigorously.

For simplicity, we suppose that there is only one output and that the
input prices are all fixed. Hence the profit function only depends on the
(scalar) price of output. Denote the short-run profit function by mg(p, )
where z is some factor that is fixed in the short run. Let the long-run
profit-maximizing demand for this factor be given by z(p) so that the long-
run profit function is given by 7 (p) = 7s(p, z(p)). Finally, let p* be some
given output price, and let z* = z(p*) be the optimal long-run demand for
the z2-factor at p*.

The long-run profits are always at least as large as the short-run profits
since the set of factors that can be adjusted in the long run includes the
subset of factors that can be adjusted in the short run. It follows that

h(p) = 71(p) — ms(p, 27) = ms(p, 2(p)) — 7s(p,2") 2 0

for all prices p. At the price p* the difference between the short-run and
long-run profits is zero, so that h(p) reaches a minimum at p = p*. Hence,
the first derivative must vanish at p*. By Hotelling’s lemma, we see that
the short-run and the long-run net supplies for each good must be equal
at p*.

But we can say more. Since p* is in fact a minimum of h(p), the second
derivative of h(p) is nonnegative. This means that

FPm(pr) _ Omspr,2Y)
op? Op? =

Using Hotelling’s lemma once more, it follows that

dyo(p*) Oys(p*,2") _ &*mil(p’) Oms(p®,2")

dp Op Op? Op?

This expression implies that the long-run supply response to a change in
price is at least as large as the short-run supply response at z* = z(p*).
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Notes

The properties of the profit function were developed by Hotelling (1932),
Hicks (1946), and Samuelson (1947).

Exercises

3.1. A competitive profit-maximizing firm has a profit function w{wy, w3) =
¢1(w1) + ¢2(w2). The price of output is normalized to be 1.

(a) What do we know about the first and second derivatives of the
functions ¢;(w;)?

(b) If z;{w;1,ws) is the factor demand function for factor i, what is the
sign of dz;/0w;?

(c) Let f(zy,z2) be the production function that generated the profit
function of this form. What can we say about the form of this production
function? (Hint: look at the first-order conditions.)

3.2. Consider the technology described by y =0 for z < 1 and y = Inz for
z > 1. Calculate the profit function for this technology.

3.3. Given the production function f(z1,z2) = a1lnz; + asInzs, calcu-
late the profit-maximizing demand and supply functions, and the profit
function. For simplicity assume an interior solution. Assume that a; > 0.

3.4. Given the production function f(z1,z2) = z{*z3?, calculate the profit-
maximizing demand and supply functions, and the profit function. Assume
a; > 0. What restrictions must a; and a, satisfy?

3.5. Given the production function f(z;,z2) = min{z, z2}*, calculate the
profit-maximizing demand and supply functions, and the profit function.
What restriction must a satisfy?



CHAPTER 4

COST
MINIMIZATION

In this chapter we will study the behavior of a cost-minimizing firm. This
is of interest for two reasons: first it gives us another way to look at the
supply behavior of a firm facing competitive output markets, and second,
the cost function allows us to model the production behavior of firms that
don’t face competitive output markets. In addition, the analysis of cost
minimization gives us a taste of the analytic methods used in examining
constrained optimization problems.

4.1 Calculus analysis of cost minimization

Let us consider the problem of finding a cost-minimizing way to produce a
given level of output:

min wx
x

such that f(x) =yv.

We analyze this constrained minimization problem using the method of
Lagrange multipliers. Begin by writing the Lagrangian

LA x) = wx — A(f(x) - v),
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and differentiate it with respect to each of the choice variables, z;, and
the Lagrange multiplier, A. The first-order conditions characterizing an
interior solution x* are

'w,-—/\af(x ) =0 fori=1,...,n
a.’l,'-,;
fx*)=y.

These conditions can also be written in vector notation. Letting D f(x) be
the gradient vector, the vector of partial derivatives of f(x), we can write
the derivative conditions as

w = AD f(x*).

We can interpret these first-order conditions by dividing the it* condition
by the 5% condition to get

i,j=1,--,n (4.1)

%

The right-hand side of this expression is the technical rate of substitution,
the rate at which factor j can be substituted for factor ¢ while maintaining
a constant level of output. The left-hand side of this expression is the
economic rate of substitution—at what rate factor j can be substituted
for factor ¢ while maintaining a constant cost. The conditions given above
require that the technical rate of substitution be equal to the economic rate
of substitution. If this were not so, there would be some kind of adjustment
that would result in a lower cost way of producing the same output.

For example, suppose

of (x*
ﬁ_g¢l_ T
w; 171 8f(x*)’

%

Then if we use one unit less of factor ¢ and one unit more of factor j,
output remains essentially unchanged but costs have gone down. For we
have saved two dollars by hiring one unit less of factor 7 and incurred an
additional cost of only one dollar by hiring more of factor j.

This first-order condition can also be represented graphically. In Fig-
ure 4.1, the curved lines represent isoquants and the straight lines represent
constant cost curves. When y is fixed, the problem of the firm is to find
a cost-minimizing point on a given isoquant. The equation of a constant
cost curve, C = w;x; + waks, can be written as zp = C/ws — (wy /w2)z;.
For fixed w; and w, the firm wants to find a point on a given isoquant
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FACTOR 2

fix, %)=y

FACTOR 1
Cost minimization. At a point that minimizes costs, the Figure
isoquant must be tangent to the constant cost line. 4.1

where the associated constant cost curve has minimal vertical intercept. It
is clear that such a point will be characterized by the tangency condition
that the slope of the constant cost curve must be equal to the slope of the
isoquant. Substituting the algebraic expressions for these two slopes gives
us equation (4.1).

Examination of Figure 4.1 indicates that there is also a second-order
condition that must be satisfied at a cost-minimizing choice, namely, that
the isoquant must lie above the isocost line. Another way to say this
is that any change in factor inputs that keeps costs constant—that is,
a movement along the isocost line—must result in output decreasing or
remaining constant.

What are the local implications of this condition? Let (h1, h2) be a small
change in factors 1 and 2 and consider the associated change in output.
Assuming the necessary differentiability, we can write the second-order
Taylor series expansion

f

Is)
f(931+h1,$2+h2)zf($1,$2)+5——h1+3f
O%f 4 O*f

*3 [a 2 2 b 823

This is more conveniently written in matrix form as

f@r+hi, 23 +he) = f(zi,22) + (i fo) (Z;)

1 fir Jfi2 ) ( hy )
~(h1 h .
+2( ! 2)(f21 faz ) \ ha
A change (hi, hy) that keeps costs constant must satisfy wih; +wahe = 0.

Substituting for w, from the first-order condition for cost minimization, we
can write this as

wihy +wahy = Afihy + Afaho = A[fihy + faho] =

2
h1h2+a fh:|
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Hence, the first-order terms in this Taylor expansion must vanish for move-
ments along the isocost line. Thus, the requirement that output decreases
for any movement along the isocost line can be stated as

o) (0 J) (i) <0

(4.2)
for all (hy,hy) such that (fi f2) (Z;) = 0.

Intuitively, at the cost-minimizing point, a first-order movement tangent
to the isocost curve implies output remains constant, and a second-order
movement implies output decreases.

This way of expressing the second-order condition generalizes to the n-
factor case; the appropriate second-order condition is that the Hessian
matrix of the production function is negative semidefinite subject to a
linear constraint

h'D?f(x*)h < 0 for all h satisfying wh = 0.

4.2 More on second-order conditions

In Chapter 27, page 498, we show that we can state the second-order con-
ditions in a way involving the Hessian matrix of the Lagrangian. Let us
apply that method to the case at hand.

In this case, the Lagrangian is

L, z1,x2) = w121 + wax2 — A[f(z1,72) — ).

The first-order conditions for cost minimization are that the first derivative
of the Lagrangian with respect to A, z;, and z, equals zero. The second-
order conditions involve the Hessian matrix of the Lagrangian,
%L 0L 0L
% 5X23$1 OX0z2
. x % %L oL 0L
Dz‘c(/\ ,II,IL‘2) = Z?xﬂ?X a_z%— 3:1318.’122
%L oL 0L
0z20X  Oz20z; Dz

It is convenient to use f,, to denote 0% f /dz,0z,. Calculating the various
second derivatives and using this notation gives us

0 -fi —f2
D2C(A\*,zf,z3) = | =fi —Au —Ahe |- (4.3)
—fa =Afa —Af2
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This is the so-called bordered Hessian matrix. It follows from Chap-
ter 27, page 498, that the second-order conditions stated in (4.2) can be
satisfied as a strict inequality if and only if the determinant of the bordered
Hessian is negative. This gives us a relatively simple condition to determine
whether or not the second-order conditions are satisfied in a particular case.
In the general case, with n-factor demands, the second-order conditions
become a bit more complicated. In this case, we have to check the sign of
the determinants of certain submatrices of the bordered Hessian. See the
discussion in Chapter 27, page 498.
Suppose, for example, that there are three factors of production. The
bordered Hessian will take the form
0 - —/\1}2 —)‘; 3
2pryk b w x —-fi =AM —Afiz —Afis
DDLU o mi) = | s Nt ~Mam Mm | 4
—fa —Afa1 —Afs2 —Afss
The second-order conditions for the three-factor case then require that the
determinant of both (4.3) and (4.4) be negative when evaluated at the
optimal choice. If there are n factors, all of the bordered Hessians of this
form must be negative in order to have the second-order conditions satisfied
as strict inequalities.

4.3 Difficulties

For each choice of w and y there will be some choice of x* that minimizes
the cost of producing y units of output. We will call the function that
gives us this optimal choice the conditional factor demand function
and write it as x(w.y). Note that conditional factor demands depend on
the level of output produced as well as on the factor prices. The cost
function is the minimal cost at the factor prices w and output level y;
that is, c(w,y) = wx(w,y).

The first-order conditions are reasonably intuitive, but simply applying
the first-order conditions mechanically may lead to difficulties, as in the
case of profit maximization. Let us examine the four possible difficulties
that can arise with the profit maximization problem and see how they relate
to the cost minimization problem.

First. the technology in question may not be representable by a differ-
entiable production function, so the calculus techniques cannot be applied.
The Leontief technology is a good example of this problem. We will calcu-
late its cost function below.

The second problem is that the conditions are valid only for interior
operating positions; they must be modified if a cost minimization point
occurs on the boundary. The appropriate conditions turn out to be

AU <otz =0
oz,



54 COST MINIMIZATION (Ch. 4)

of(x”)
A oz,

We will examine this problem further in the context of a specific example
below.

The third problem in our discussion of profit maximization had to do
with the existence of a profit-maximizing bundle. However, this sort of
problem will not generally arise in the case of cost minimization. It is
known that a continuous function achieves a minimum and a maximum
value on a closed and bounded set. The objective function wx is certainly
a continuous function and the set V(y) is a closed set by hypothesis. All
that we need to establish is that we can restrict our attention to a bounded
subset of V(y). But this is easy. Just pick an arbitrary value of x, say
x'. Clearly the minimal cost factor bundle must have a cost less than wx’.
Hence, we can restrict our attention to the subset {x in V(y): wx < wx'},
which will certainly be a bounded subset, as long as w >> 0.

The fourth problem is that the first-order conditions may not determine
a unique operating position for the firm. The calculus conditions are, after
all, only necessary conditions. Although they are usually sufficient for the
existence of local optimum, they will uniquely describe a global optimum
only under certain convexity conditions—i.e., requiring V(y) to be convex
for cost minimization problems.

—w, =0ifzF >0.

EXAMPLE: Cost function for the Cobb-Douglas technology
Consider the cost minimization problem

c(w,y) = ;xllizlzwlml + Wo Ty

such that Az$zb = y.

Solving the constraint for zo, we see that this problem is equivalent to

a

. 11 -8
minw 1z + weA bydz, °.
I

The first-order condition is

a 1 1 _a+b
wy — sweA b yba, P =0,

b

which gives us the conditional demand function for factor 1:

a¥b
.1 awsog 1
.171('1[)1,'(1)2,3/)214 atd [ ] atd
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The other conditional demand function is

-1 [awp] e
za(wi, w2, y) = att | o Yyeatd.

The cost function is
C(’U)l, wa, y) = wlxl(wly wa, y) + 1U2:172(’U)1, Wa, y)

b —a
AT (34 (5) T wituiu

When we use the Cobb-Douglas technology for examples, we will usu-
ally measure units so that A = 1 and use the constant-returns-to-scale
assumption that a + b = 1. In this case the cost function reduces to

c(wr,ws,y) = Kwiwi %y,

where K = a7 %(1 —a)2 L.

EXAMPLE: The cost function for the CES technology

1 .
Suppose that f(z1,z2) = (z{ + 25)*. What is the associated cost function?
The cost minimization problem is

min w1 + woTs

such that zf + 25 = ¢*
The first-order conditions are

—dpzft =0
wy — Aprh ' =0

z{ + 26 = yf.
Solving the first two equations for z{ and z%, we have

z{ = wf 1(/\P)" !
zh = ws l()\p)p_—gf

Substitute this into the production function to find

)7 [0 +uf ] =y,



56 COST MINIMIZATION (Ch. 4)

Solve this for (/\p)ﬁ__-PT and substitute into the system (4.5). This gives us
the conditional factor demand functions

= [ 7= 55
z (w1, wa,y) =w [w1 + wy ] Y

o |

10

1 e -
zo(wr, we,y) = wi™’ [wl""l +w2"“] Y.
Substituting these functions into the definition of the cost function yields

C(’UJl, w27y) = wlxl(wl,w% y) + ’lU2.’L'2(’lU1,’lU2,y)

I - b
=y[w1" + wy ]{w{’ +wyg ]

=1
P

b £
=y [wf_l + wz"_l]
This expression looks a bit nicer if we set 7 = p/(p — 1) and write
1
C(’wl,’IU2, y) =Y [w{ + w;‘] T

Note that this cost function has the same form as the original CES pro-
duction function with r replacing p. In the general case where

f(z1,22) = [(ar1)? + (02182)”]% ,

similar computations can be done to show that

c(wy, wp,y) = [(w1/a)" + (ws/az)")" y.

EXAMPLE: The cost function for the Leontief technology

Suppose f(r1,z2) = min{az;,bz2}. What is the associated cost function?
Since we know that the firm will not waste any input with a positive price,
the firm must operate at a point where y = ax; = bxs. Hence, if the firm
wants to produce y units of output, it must use y/a units of good 1 and
y/b units of good 2 no matter what the input prices are. Hence, the cost
function is given by

wmy | way w;  Wa
clwnun,y) =+ 5=y (T F).
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EXAMPLE: The cost function for the linear technology

Suppose that f(zy,z2) = az; + bxg, so that factors 1 and 2 are perfect
substitutes. What will the cost function look like? Since the two goods are
perfect substitutes, the firm will use whichever is cheaper. Hence, the cost
function will have the form c(wy, w2, y) = min{w; /a, w2 /b}y.

In this case the answer to the cost-minimization problem typically in-
volves a boundary solution: one of the two factors will be used in a zero
amount. Although it is easy to see the answer to this particular problem, it
is worthwhile presenting a more formal solution since it serves as a nice ex-
ample of the Kuhn-Tucker theorem in action. The Kuhn-Tucker theorem is
the appropriate tool to use here, since we will almost never have an interior
solution. See Chapter 27, page 503, for a statement of this theorem.

For notational convenience we consider the special case wherea = b= 1.
We pose the minimization problem as

min w1 + weTs

st.x1t+xe =y
.’11120
1'220.

The Lagrangian for this problem can be written as
L(A, p1, p, T1, T2) = wiTy + waZe — M1 + T2 — ¥) — Ty — pola.
The Kuhn-Tucker first-order conditions are

wy —A—pu =0
wy—A— g =0
1 +IT2=Y
;20

x0 > 0.

and the complementary slackness conditions are

p1 20, gy =0ifz; >0
po >0, puy =0if o > 0.

In order to determine the solution to this minimization problem, we have
to examine each of the possible cases where the inequality constraints are
binding or not binding. Since there are two constraints and each can be
binding or not binding, we have four cases to consider.
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1) z; = 0, zo = 0. In this case, we cannot satisfy the condition that
1+ z2 =y unless y = 0.

2) z; = 0, o > 0. In this case, we know that py; = 0. Hence, the first
two first-order conditions give us

wlz)\+u1
w2=/\

Since u; > 0, this case can only arise when w; > ws. Since z; = 0, it
follows that 22 = y.

3) zz = 0, z; > 0. Reasoning similar to that in the above case shows
that z; = y and that this case can only occur when wy > w;.

4) 1 > 0, zo > 0. In this case, complementary slackness implies that
1 = 0, and gy = 0. Thus, the first-order conditions imply that w; = wo.

The above problem, though somewhat trivial, is typical of the methods
used in applying the Kuhn-Tucker theorem. If there are k constraints that
can be binding or not binding, there will be 2% configurations possible
at the optimum. Each of these must be examined to see if it is actually
compatible with all of the required conditions in which case it represents a
potentially optimal solution.

4.4 Conditional factor demand functions

Let us now turn to the cost minimization problem and the conditional factor
demands. Applying the usual arguments, the conditional factor demand
functions x(w,y) must satisfy the first-order conditions

fx(w,y)) =y
w — ADf (x(w,y)) = 0.

It is easy to get lost in matrix algebra in the following calculations, so
we will consider a simple two-good example. In this case the first-order
conditions look like

f(z1(wr, we,p), x2(wi, we,y)) =y

wy — /\Bf(-rl(wlvw2’y)am2(wl,w2vy)) ~0
811!1

wy — Aaf(ml(wlvw%y)vw?(wlaw?? y)) =0
62,'2

Just as in the last chapter, these first-order conditions are identities—by
definition of the conditional factor demand functions they are true for all
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values of w1, wa, and y. Therefore, we can differentiate these identities with
respect to wy, say.
We find

0f 00 0f o
Or1 0w,  Oxo Oun

2 2
1_A[8f6:c1+ o f 012] af ox _

922 0w, | 0x10z3 0wy | Ozi 0wy

=0

Oz, 0w, ~

O_A[ *f om a2f%] df 9

Oz901; Oun —(9‘332 owy

These equations can be written in matrix form as

s [0
0 ~fi —h\[m 0
-fi =Afu —Afa 3%1‘ =|-1

—fa —Afiz —Afa (ggz
w1
Note the important fact that the matrix on the left-hand side is precisely
the bordered Hessian involved in the second-order conditions for maximiza-
tion. (See Chapter 27, page 498.) We can use a standard technique from
matrix algebra, Cramer’s rule, which is discussed in Chapter 26, page 477,
to solve for O, /dwy:

0 0 —f2
-fi -1 =Afa
Or;  |=fo 0 —Afm

dw, | 0 -fi —f2
=fi =AM —Afa
—fa =Afiz —Af22
Let H be the determinant of the matrix in the denominator of this frac-

tion. We know that this is a negative number by the second-order condi-
tions for minimization. Carrying out the calculation in the numerator, we

have
81‘1 _ f_22
6w1 - H
Hence, the conditional factor demand curve slopes downward.

Similarly, we can derive the expression for 9z2/0w;. Applying Cramer’s
rule again, we have

<0.

0 £ 0
-fi =AM -1
Ory _ |—f2 —Afha O

dw, | 0 -h —f2
—-fi =Afii —Afa
—f2 —Afiz —Afa
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Carrying out the indicated calculations,

9oz _ _RhH o, (4.6)

Repeating the same sorts of calculations for dzy/0w,, we find

0 0 —f
-fi 0 —Afie
9z1 _ —f2 =1 —=Afa 5
Ow, 0 -h ~f2 |
—-fi =Afu =Afa
—fa =Afiz —Afa
which implies
on __hta
Sws - H > 0. (4.7

Comparing expressions (4.6) and (4.7), we see that they are identical. Thus
Oz /Bws equals Jz3/0w;. Just as in the case of profit maximization, we
find a symmetry condition: as a consequence of the model of cost mini-
mization the “cross-price effects must be equal.”

In the two-input case under examination here, the sign of the cross-price
effect must be positive. That is, the two factors must be substitutes. This
is special to the two-input case; if there are more factors of production, the
cross-price effect between any two of them can go either direction.

We now proceed to rephrase the above calculations in terms of matrix
algebra. Since y will be held fixed in all the calculations, we will drop it as
an argument of the conditional factor demands for notational convenience.
The first-order conditions for cost minimization are

fx(w)) =y
w — ADf(x(w)) = 0.

Differentiating these identities with respect to w we find:

Df(x(w))Dx(w) =0
I - AD?f(x(w))Dx(w) — Df(x(w))DXA(w) = 0.

Rearranging slightly gives us
(ol 04w (Bxtm ) == (1)

Note that the matrix is simply the bordered Hessian matrix—i.e., the sec-
ond derivative matrix of the Lagrangian. Assuming that we have a regular
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optimum so that the Hessian matrix is nondegenerate. we can solve for the
substitution matrix Dx(w) by taking the inverse of the Hessian matrix:

DAwW)\ [ 0 Df(x) \ ' [0
(Dx(w)) - <Df(x)t )\DQf(x)> I)'
(We have multiplied through by —1 to eliminate the minus signs from both
sides of the expression.) Since the bordered Hessian is symmetric, its in-
verse is symmetric. which shows that the cross-price effects are symmetric.
It can also be shown that the substitution matrix is negative semidefinite.

Since we will present a simple proof of this below using other methods, we
will omit this demonstration here.

4.5 Algebraic approach to cost minimization

As in the case of profit maximization, we can also apply the algebraic
techniques to the problem of cost minimization. We take as our data some
observed choices by a firm of output levels 3, factor prices wt, and factor
levels xt, for t = 1,---,T7. When will these data be consistent with the
model of cost minimization?

An obvious necessary condition is that the cost of the observed choice of
inputs is no greater than the cost of any other level of inputs that would
produce at least as much output. Translated into symbols, this says

wix! < w'x® for all s and ¢ such that y° > y*.

We will refer to this condition as the Weak Axiom of Cost Minimiza-
tion (WACM).

As in the case of profit maximization, WACM can be used to derive the
delta version of downward-sloping demands. Take two different observa-
tions with the same output level and note that cost minimization implies
that

wixt < wix®

wix® < wixt.
The first expression says that the t* observation must have the lower
production costs at the t** prices; the second expression says that the
sth observation must have the lower production costs at the st* prices.

Write the second inequality as

—wix! < —w®x?,
add it to the first. and rearrange the result to get

(wh —w*)(x! — x%) <0,
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or
AwAx < 0.

Roughly speaking, the vector of factor demands must move “opposite” the
vector of factor prices.

One can also construct inner and outer bounds to the true input require-
ment set that generated the data. We will state the bounds here and leave
it to the reader to check the details. The arguments are similar to those
presented for the case of profit maximization.

The inner bound is given by:

VI(y) = convex monotonic hull of {x’ : y* > y}.

That is, the inner bound is simply the convex monotonic hull of all obser-
vations that can produce at least y amount of output. The outer bound is
given by:

VO(y) = {x : w'x > wix® for all ¢ such that y* < y}.

These constructions are analogous to the earlier constructions of YO and
YI. A picture of VO and VI is given in Figure 4.2.

FACTOR 2 FACTOR 2

FACTOR 1 FACTOR 1

Inner and outer bounds. The sets VI and VO give inner
and outer bounds to the true input requirement set.

It is pretty obvious that VI(y) is contained in V(y), at least as long
as V(y) is convex and monotonic. It is perhaps not quite so obvious that
VO(y) contains V (y), so we provide the following proof.

Suppose, contrary to the assertion, that we have some x that is in V(y)
but not in VO(y). Since x is not in VO(y), there must be some observation
t such that y* <y and

wix < wixh. (4.8)

But since x is in V(y) it can produce at least y* units of output and (4.8)
shows that it costs less than x!. This contradicts the assumption that x?
is a cost-minimizing bundle.
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Notes

The algebraic approach to cost minimization is further developed in Var-
ian (1982b).

Exercises

4.1. Prove rigorously that profit maximization implies cost minimization.

4.2. Use the Kuhn-Tucker theorem to derive conditions for cost minimiza-
tion that are valid even if the optimal solution involves a boundary solution.

4.3. A firm has two plants with cost functions ¢;(y;) = y?/2 and ca(y2) =
y2. What is the cost function for the firm?

4.4. A firm has two plants. One plant produces output according to the
production function z¢z;~*. The other plant has a production function

2tz 7% What is the cost function for this technology?

4.5. Suppose that the firm has two possible activities to produce output.
Activity a uses a; units of good 1 and ay units of good 2 to produce 1
unit of output. Activity b uses b; units of good 1 and by units of good
2 to produce 1 unit of output. Factors can only be used in these fixed
proportions. If the factor prices are (w;,ws), what are the demands for
the two factors? What is the cost function for this technology? For what
factor prices is the cost function not differentiable?

4.6. A firm has two plants with cost functions ¢;(y;) = 4,/71 and co(y2) =
2,/y2- What is its cost of producing an output y?

4.7. The following table shows two observations on factor demand z,, x3,
factor prices, wy, wy, and output, y for a firm. Is the behavior depicted in
this table consistent with cost-minimizing behavior?

Obs gy wy Wo Ty L)
A} 100 2 1 10 20
B 110 1 2 14 10

4.8. A firm has a production function y = x1z,. If the minimum cost of
production at wy = wy = 1 is equal to 4, what is y equal to?



CHAPTER 5

COST
FUNCTION

The cost function measures the minimum cost of producing a given level
of output for some fixed factor prices. As such it summarizes information
about the technological choices available to the firms. It turns out that the
behavior of the cost function can tell us a lot about the nature of the firm’s
technology.

Just as the production function is our primary means of describing the
technological possibilities of production, the cost function will be our pri-
mary means of describing the economic possibilities of a firm. In the next
two sections we will investigate the behavior of the cost function c(w,y)
with respect to its price and quantity arguments. Before undertaking that
study we need to define a few related functions, namely the average and
the marginal cost functions.

5.1 Average and marginal costs

Let us consider the structure of the cost function. In general, the cost
function can always be expressed simply as the value of the conditional
factor demands.

c(w,y) = wx(w,y)
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This just says that the minimum cost of producing y units of output is the
cost of the cheapest way to produce y.

In the short run, some of the factors of production are fixed at predeter-
mined levels. Let x; be the vector of fixed factors, x, the vector of variable
factors, and break up w into w = (w,, wy), the vectors of prices of the
variable and the fixed factors. The short-run conditional factor demand
functions will generally depend on xy, so we write them as x,(w,y,Xy).
Then the short-run cost function can be written as

c(w,y, xf) = WyX, (W, Y, xf) + WXy,

The term w,x,(w,y, xys) is called short-run variable cost (SVC), and
the term wx; is the fixed cost (FC). We can define various derived cost
concepts from these basic units:

short-run total cost = STC = w,x,(W,y,Xs) + WXy

o(w,y,x
short-run average cost = SAC = o(w,9,%y)

WX, (W, ¥y, X
short-run average variable cost = SAVC = ——"— o(W, Y, X7)

Y
short-run average fixed cost = SAFC = Wixs
short-run marginal cost = SMC = %v%xf)

When all factors are variable, the firm will optimize in the choice of x;.
Hence, the long-run cost function only depends on the factor prices and
the level of output as indicated earlier.

We can express this long-run function in terms of the short-run cost
function in the following way. Let x;(w,y) be the optimal choice of the
fixed factors, and let x,(w,y) = X,(W,y,x7(W,y)) be the long-run optimal
choice of the variable factors. Then the long-run cost function can be
written as

(W, Y) = WXy (W,y) + wixp(w,y) = c(W,y, X (W, y)).

The long-run cost function can be used to define cost concepts similar to
those defined above:

long-run average cost = LAC = c(“; y)
a )
long-run marginal cost = LMC = c(;;’/ y)

Notice that “long-run average cost” equals “long-run average variable cost”
since all costs are variable in the long-run; “long-run fixed costs” are zero
for the same reason.
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Long run and short run are of course relative concepts. Which factors
are considered variable and which are considered fixed depends on the
particular problem being analyzed. You must first consider over what time
period you wish to analyze the firm’s behavior and then ask what factors
can the firm adjust during that time period.

EXAMPLE: The short-run Cobb-Douglas cost functions

Suppose the second factor in a Cobb-Douglas technology is restricted to
operate at a level k. Then the cost-minimizing problem is

min wyx; + wak
such that y = «$k' .

Solving the constraint for z; as a function of y and k gives
z = (yk“‘l)?}.

Thus
(w1, wa, v, k) = w1 (yk* 1) + wak.

The following variations can also be calculated:

= k
short-run average cost = w, (%) + _"_‘_’5__
short-run average variable cost = w; (%) =
‘w2k

short-run average fixed cost = e

1-a
short-run marginal cost = % (%) e

EXAMPLE: Constant returns to scale and the cost function

If the production function exhibits constant returns to scale, then it is
intuitively clear that the cost function should exhibit costs that are linear
in the level of output: if you want to produce twice as much output it
will cost you twice as much. This intuition is verified in the following
proposition:
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Constant returns to scale. If the production function exhibits constant
returns to scale, the cost function may be written as c(w,y) = ye(w, 1).

Proof. Let x* be a cheapest way to produce one unit of output at prices
w so that c(w,1) = wx*. Then I claim that c(w,y) = wyx* = ye(w,1).
Notice first that yx* is feasible to produce y since the technology is constant
returns to scale. Suppose that it does not minimize cost; instead let x’ be
the cost-minimizing bundle to produce y at prices w so that wx' < wyx*.
Then wx'/y < wx* and x’/y can produce 1 since the technology is constant
returns to scale. This contradicts the definition of x*. §

If the technology exhibits constant returns to scale, then the average
cost, the average variable cost, and the marginal cost functions are all the
same.

5.2 The geometry of costs

The cost function is the single most useful tool for studying the economic
behavior of a firm. In a sense to be made clear later, the cost function
summarizes all economically relevant information about the technology of
the firm. In the following sections we will examine some of the properties
of the cost function. This is most conveniently done in two stages: first, we
examine the properties of the cost function under the assumption of fixed
factor prices. In this case, we will write the cost function simply as c(y).
Second, we will examine the properties of the cost function when factor
prices are free to vary.

Since we have taken factor prices to be fixed, costs depend only on the
level of output of a firm, and useful graphs can be drawn that relate output
and costs. The total cost curve is always assumed to be monotonic in
output: the more you produce, the more it costs. The average cost curve,
however, can increase or decrease with output, depending on whether total
costs rise more than or less than linearly. It is often thought that the most
realistic case, at least in the short run, is the case where the average cost
curve first decreases and then increases. The reason for this is as follows.

In the short run the cost function has two components: fixed costs and
variable costs. We can therefore write short-run average cost as -

SAC = c(“”z’ xs) _ w; X WX (Z’ Y2Xf) _ SAFC + SAVC,

In most applications, the short-run fixed factors will be such things as
machines, buildings, and other types of capital equipment while the variable
factors will be labor and raw materials. Let us consider how the costs
attributable to these factors will change as output changes.
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As we increase output, average variable costs may initially decrease if
there is some initial region of economies of scale. However, it seems rea-
sonable to suppose that the variable factors required will increase more or
less linearly until we approach some capacity level of output determined by
the amounts of the fixed factors. When we are near to capacity, we need
to use more than a proportional amount of the variable inputs to increase
output. Thus, the average variable cost function should eventually increase
as output increases, as depicted in Figure 5.1A. Average fixed costs must
of course decrease with output, as indicated in Figure 5.1B. Adding to-
gether the average variable cost curve and the average fixed costs gives us
the U-shaped average cost curve in Figure 5.1C. The initial decrease in
average costs is due to the decrease in average fixed costs; the eventual
increase in average costs is due to the increase in average variable costs.
The level of output at which the average cost of production is minimized
is sometimes known as the minimal efficient scale.

In the long run all costs are variable costs; in such circumstances in-
creasing average costs seems unreasonable since a firm could always repli-
cate its production process. Hence, the reasonable long-run possibilities
should be either constant or decreasing average costs. On the other hand,
as we mentioned earlier, certain kinds of firms may not exhibit a long-run
constant-returns-to-scale technology because of long-run fixed factors. If
some factors do remain fixed even in the long run, the appropriate long-run
average cost curve should presumably be U-shaped, for essentially the same
reasons given in the short-run case.

AC AC AC
AVC AVC AVC
AFC AFC AFC
AVC AFC U
OUTPUT OuUTRUT OUTPUT

Average cost curves. The average variable cost curve will
eventually rise with output, while the average fixed cost curve
always falls with output. The interaction of these two effects
produces a U-shaped average cost curve.

¢

Let us now consider the marginal cost curve. What is its relationship to
the average cost curve? Let y* denote the point of minimum average cost;
then to the left of y* average costs are declining so that for y < y*

i
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Taking the derivative gives

cd(y) —c .
y (y)y2 (y)soforygy’

which implies

c
d(y) < oly) for y < y*.
Y
This inequality says that marginal cost is less than average cost to the left
of the minimum average cost point. A similar analysis shows that

d(y) > %y) for y > y*.

Since both inequalities must hold at y*, we have

reowy _ W)
(y*) P
that is, marginal costs equal average costs at the point of minimum average
costs.

What is the relationship of the marginal cost curve to the average variable
cost curve? Simply by changing the notation in the above argument, we
can show that the marginal cost curve lies below the average variable cost
curve when the average variable cost curve is decreasing, and lies above it
when it is increasing. It follows that the marginal cost curve must pass
through the minimum point of the average variable cost curve.

It is also not hard to show that marginal cost must equal average variable
cost for the first unit of output. After all, the marginal cost of the first
unit of output is the same as the average variable cost of the first unit
of output, since both numbers are equal to ¢,(1) — ¢,(0). A more formal
demonstration is also possible. Average variable cost is defined by

AVC(y) = #

If y = 0, this expression becomes 0/0, which is indeterminate. However,

the limit of ¢,(y)/y can be calculated using L’Hopital’s rule:

i ©20) _ &(0)

y—=0 y 1
(See Chapter 26, page 481, for a statement of this rule.) It follows that
average variable cost at zero output is just marginal cost.

All of the analysis just discussed holds in both the long and the short
run. However, if production exhibits constant returns to scale in the long
run, so that the cost function is linear in the level of output, then average
cost, average variable cost, and marginal cost are all equal to each other,
which makes most of the relationships just described rather trivial.
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EXAMPLE: The Cobb-Douglas cost curves

As calculated in an earlier example, the generalized Cobb—Douglas technol-
ogy has a cost function of the form

c(y)=Kys  a+b<1

where K is a function of factor prices and parameters. Thus,

l—a—b

ac() = 22 — gy

l—a-b
a+b |

MC(y) =¢'(y) = my

If a + b < 1, the cost curves exhibit increasing average costs; if a + b =1,
the cost curves exhibit constant average cost.

We have also seen earlier that the short-run cost function for the Cobb-
Douglas technology has the form

cly) = Ky% + F.
Thus

l—a 17
AC(y)=c—(y—)=Ky @ +Z.

5.3 Long-run and short-run cost curves

Let us now consider the relationship between the long-run cost curves and
the short-run cost curves. It is clear that the long-run cost curve must never
lie above any short-run cost curve, since the short-run cost minimization
problem is just a constrained version of the long-run cost minimization
problem.

Let us write the long-run cost function as ¢(y) = ¢(y, 2(y)). Here we have
omitted the factor prices since they are assumed fixed, and we let z(y) be
the cost-minimizing demand for a single fixed factor. Let y* be some given
level of output, and let z* = 2(y*) be the associated long-run demand for
the fixed factor. The short-run cost, ¢(y, 2z*), must be at least as great
as the long-run cost, ¢(y, 2(y)), for all levels of output, and the short-run
cost will equal the long-run cost at output y*, so c(y*, 2*) = c(y*, 2(y*)).
Hence, the long- and the short-run cost curves must be tangent at y*.

This is just a geometric restatement of the envelope theorem. The slope
of the long-run cost curve at y* is

de(y™, 2(y™)) _ Ocly”, 2%) + Oc(y*, 2*) 9z(y*)
dy . Oy 0z oy
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But since z* is the optimal choice of the fixed factors at the output level
y*, we must have

de(y™, z%)
——F" =0.
0z
Thus, long-run marginal costs at y* equal short-run marginal costs at

(", 2").

Finally, we note that if the long- and short-run cost curves are tangent,
the long- and short-run average cost curves must also be tangent. A typical
configuration is illustrated in Figure 5.2.

AC

AC(y: 2*)

y* ouTPUT

Long-run and short-run average cost curves. Note that
the long-run and the short-run average cost curves must be tan-
gent which implies that the long-run and short-run marginal
costs must be equal.

Another way to see the relationship between the long-run and the short-
run average cost curves is to start with the family of short-run average cost
curves. Suppose, for example, that we have a fixed factor that can be used
only at three discrete levels: zy, 2o, 23. We depict this family of curves in
Figure 5.3. What would be the long-run cost curve? It is simply the lower
envelope of these short-run curves since the optimal choice of 2z to produce
output y will simply be the choice that has the minimum cost of producing
y. This envelope operation generates a scalloped-shaped long-run average
cost curve. If there are many possible values of the fixed factor, these
scallops become a smooth curve.

5.4 Factor prices and cost functions

We turn now to the study of the price behavior of cost functions. Several
interesting properties follow directly from the definition of the functions.
These are summarized in the following remarks. Note the close analogy
with the properties of the profit function.

Figure
5.2
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SAC, SAC, SAC,

LAC

OUTPUT

Long-run average cost curve. The long-run average cost
curve, LAC, is the lower envelope of the short-run average cost
curves, SAC,, SAC;, and SAC;.

Properties of the cost function.

1) Nondecreasing wn w. If w' > w, then ¢(w',y) > c(w,y).
2) Homogeneous of degree 1 in w. c(tw,y) = te(w,y) fort > 0.

3) Concave in w. c(tw + (1 — t)w',y) > te(w,y) + (1 — t)e(w',y) for
0<t<L 1.

4) Continuous in w. c(w,y) is continuous as a function of w, for w > 0.

Proof.

1) This is obvious, but a formal proof may be instructive. Let x and x’
be cost-minimizing bundles associated with w and w’. Then wx < wx’
by minimization and wx’ < w'x’ since w < w’. Putting these inequalities
together gives wx < w'x’ as required.

2) We show that if x is the cost-minimizing bundle at prices w, then x
also minimizes costs at prices tw. Suppose not, and let x' be a cost-
minimizing bundle at tw so that twx’ < twx. But this inequality implies
wx’ < wx, which contradicts the definition of x. Hence, multiplying factor
prices by a positive scalar ¢ does not change the composition of a cost-
minimizing bundle, and, thus, costs must rise by exactly a factor of ¢
c(tw,y) = twx = te(w, y).

3) Let (w,x) and (w’, x’) be two cost-minimizing price-factor combinations
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and let w”’ =tw + (1 — t)w’ for any 0 <t < 1. Now,

"x" =twx" + (1 -t)w'x".

c(w',y)=w
Since x” is not necessarily the cheapest way to produce y at prices w’ or
w, we have wx” > c(w,y) and w' - X" > ¢(w',y). Thus,

e(w”,y) > te(w,y) + (1 — t)e(w', y).

4) The continuity of ¢ follows from the Theorem of the Maximum, in Chap-
ter 27, page 506. 1

The only property that is surprising here is the concavity. However, we
can provide intuition for this property similar to the one presented for the
profit function. Suppose we graph cost as a function of the price of a single
input, with all other prices held constant. If the price of a factor rises, costs
will never go down (property 1), but they will go up at a decreasing rate
(property 3). Why? Because as this one factor becomes more expensive
and other prices stay the same, the cost-minimizing firm will shift away
from it to use other inputs.

This is made more clear by considering Figure 5.4. Let x* be a cost-
minimizing bundle at prices w*. Suppose the price of factor 1 changes
from w} to w;. If we just behave passively and continue to use x*, our
costs will be C = wyz} + Y ., wiz}. The minimal cost of production
c(w,y) must be less than this “passive” cost function; thus, the graph of
c(w,y) must lie below the graph of the passive cost function, with both
curves coinciding at w}. It is not hard to see that this implies c(w,y) is
concave with respect to w;. ’

n
C=w,x;+ Ezw,'x,'
I=

Passive cost function
Cost function c{w, y)

cwly) p-——--——--—o

wy W,

Concavity of the cost function. The cost function will be
a concave function of the factor price since it must always lie
below the “passive” cost function.

Figure
5.4
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The same ‘graph can be used to discover a very useful way to find an
expression for the conditional factor demand. We first state the result
formally:

Shephard’s lemma. (The derivative property.) Let z;(w,y) be the
firm’s conditional factor demand for input i. Then if the cost function is
differentiable at (w,y), and w; >0 fori=1,...,n then

Oc(w, .
:v,-(w,y):—é—u—;_—y)— i=1,---,n.

Proof. The proof is very similar to the proof of Hotelling’s lemma. Let x*
be a cost-minimizing bundle that produces y at prices w*. Then define the
function

9(w) = c(w,y) — wx".

Since c¢(w,y) is the cheapest way to produce y, this function is always
nonpositive. At w = w*, g(w*) = 0. Since this is a maximum value of
g(w), its derivative must vanish:

dg(w*) _ Oc(w*,y) . .
Tow T ow; z; =0 i=1,---,n

Hence, the cost-minimizing input vector is just given by the vector of deriva-
tives of the cost function with respect to the prices. i

Since this proposition is important, we will suggest four different ways
of proving it. First, the cost function is by definition equal to c(w,y) =
wx(w,y). Differentiating this expression with respect to w; and using the
first-order conditions give us the result. (Hint: x(w,y) also satisfies the
identity f (x(w,’y)) = g. You will need to differentiate this with respect to
’w,'.)

Second, the above calculations are really just repeating the derivation of
the envelope theorem described in the next section. This theorem can be
applied directly to give the desired result.

Third, there is a nice geometrical argument that uses the same Figure
5.4 we used in arguing for concavity of the cost function. Recall in Figure
5.4 that the line ¢ = wiz} + ), wiz} lay above ¢ = ¢(w,y) and both
curves coincided at w; = w}. Thus, the curves must be tangent, so that
2} = dc(w", y)/Ow.

Finally, we consider the basic economic intuition behind the proposition.
If we are operating at a cost-minimizing point and the price w; increases,
there will be a direct effect, in that the expenditure on the first factor
will increase. There will also be an indirect effect, in that we will want to
change the factor mix. But since we are operating at a cost-minimizing
point, any such infinitesimal change must yield zero additional profits.
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5.5 The envelope theorem for constrained optimization

Shephard’s lemma is another example of the envelope theorem. However,
in this case we must apply a version of the envelope theorem that is ap-
propriate for constrained maximization problems. The proof for this case
is given in Chapter 27, page 501.

Consider a general parameterized constrained maximization problem of
the form

M(a) = max g(:vl,zg,a)
Z1,T2
such that h(z1,z2,a) = 0.

In the case of the cost function g(z1,z2,a) = w1z + wex2, h(z1,z2,a) =
f(z1,22) — y, and a could be one of the prices.
The Lagrangian for this problem is

L= g($1,$2,a) - ’\h(xlax%a)v

and the first-order conditions are

dg Oh *
21 Voo 0
99 ,Oh _ (5.1)
6.’1:2 Aa.’l,‘g =0
h(z1,z2,a) = 0.

These conditions determine the optimal choice functions (z;(a),z2(a)),
which in turn determine the maximum value function

M(a) = g(z1(a), z2(a),a). (5.2)

The envelope theorem gives us a formula for the derivative of the value

function with respect to a parameter in the maximization problem. Specif-
ically, the formula is

dM(a) 0L(x,a)

da da x=x(a)
0g(z1,x2,0) Oh(z1,x2,a)
= 2L —A
Oa z,=2.(a) da T, =z,(a)

As before, the interpretation of the partial derivatives needs special care:
they are the derivatives of g and h with respect to a holding x, and x2
fized at thewr optvmal values. The proof of the envelope theorem is given
in Chapter 27, page 501. Here we simply apply it to the cost minimization
problem.

In this problem the parameter a can be chosen to be one of the factor
prices, w,. The optimal value function M(a) is the cost function ¢(w,y).
The envelope theorem asserts that

dc(w,y) _ 0L _

aw, 311), o z,=z,(W,y)
which is simply Shephard’s lemma.

= (Ez(W, y),
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EXAMPLE: Marginal cost revisited

As another application of the envelope theorem, consider the derivative of
the cost function with respect to y. According to the envelope theorem,
this is given by the derivative of the Lagrangian with respect to y. The
Lagrangian for the cost minimization problem is

L = w1z + wezs — A[f(z1,22) — Y]

Hence
Oc(wy, we,y) _

dy
In other words, the Lagrange multiplier in the cost minimization problem
is simply marginal cost.

A

5.6 Comparative statics using the cost function

We have shown earlier that cost functions have certain properties that fol-
low from the structure of the cost minimization problem; we have shown
above that the conditional factor demand functions are simply the deriva-
tives of the cost functions. Hence, the properties we have found concerning
the cost function will translate into certain restrictions on its derivatives,
the factor demand functions. These restrictions will be the same sort of
restrictions we found earlier using other methods, but their development
using the cost function is quite nice.
Let us go through these restrictions one by one.

1) The cost function is nondecreasing in factor prices. It follows from
this that dc(w,y)/Ow; = zi(w,y) > 0.

2) The cost function is homogeneous of degree 1 in w. Therefore, the
derivatives of the cost function, the factor demands, are homogeneous of
degree 0 in w. (See Chapter 26, page 482).

3) The cost function is concave in w. Therefore, the matrix of second
derivatives of the cost function—the matrix of first derivatives of the
factor demand functions—is a symmetric negative semidefinite matrix.
This is not an obvious outcome of cost-minimizing behavior. It has
several implications.

a) The cross-price effects are symmetric. That is,

ox,(w,y) _ 0%c(w,y) dc(w,y) 0Oz;(w,y)

ow; Ow;Ow; Ow; 0w Ow;
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b) The own-price effects are nonpositive. Roughly speaking, the condi-
tional factor demand curves are downward sloping. This follows since
0zi(w,y)/0w; = 8%c(w,y)/0w? < 0 where the last inequality comes
from the fact that the diagonal terms of a negative semidefinite matrix
must be nonpositive.

¢) The vector of changes in factor demands moves “opposite” the vector
of changes in factor prices. That is, dwdx < 0.

Note that since the concavity of the cost function followed solely from
the hypothesis of cost minimization, the symmetry and negative semidefi-
niteness of the first derivative matrix of the factor demand functions follow
solely from the hypothesis of cost minimization and do not involve any
restrictions on the structure of the technology.

Notes

The properties of the cost function were developed by several authors, but
the most systematic treatment is in Shephard (1953) and Shephard (1970).
A comprehensive survey is available in Diewert (1974). The treatment here
owes much to McFadden (1978).

Exercises

5.1. A firm has two plants. One plant produces according to a cost function
c1(y1) = y?. The other plant produces according to a cost function cz(y2) =
y%. The factor prices are fixed and so are omitted from the discussion.
What is the cost function for the firm?

5.2. A firm has two plants with cost functions c; (y1) = 3y? and c2(y2) = y3.
What is the cost function for the firm?

5.3. A firm has a production function given by f(z1,z2, 23, 24) = min{2z;+
T2, Z3 + 2z4}. What is the cost function for this technology? What is the
conditional demand function for factors 1 and 2 as a function of factor
prices (w;,ws, w3, ws) and output y?

5.4. A firm has a production function given by f(z;,z2) = min{2z; +
To,z1 + 2w2}. What is the cost function for this technology? What is
the conditional demand function for factors 1 and 2 as a function of factor
prices (w;, ws) and output y?
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5.5. A firm has a production function of the form f(z;,z2) = max{z1,z2}.
* Does this firm have a convex or a nonconvex input requirement set? What
is the conditional factor demand function for factor 17 What is its cost
function?

5.6. Consider a firm with conditional factor demand functions of the form
1
z1 =1+ 3w, *wj
1
Ty = 1+ bwfws

Output has been set equal to 1 for convenience. What are the values of the
parameters a, b, and ¢ and why?

5.7. A firm has a production function y = z;x. If the minimum cost of
production at w; = w, = 1 is equal to 4, what is y equal to?

5.8. A firm has a cost function

2 -
_Jy+1 ify>0
c(-”)‘{o ify=0.

Let p be the price of output, and let the factor prices be fixed. If p = 2
how much will the firm produce? If p = 1 how much will the firm produce?
What is the profit function of this firm? (Hint: be careful!)

5.9. A typical Silicon Valley firm produces output of chips y using a cost
function ¢(y), which exhibits increasing marginal costs. Of the chips it
produces, a fraction 1 — a are defective and cannot be sold. Working chips
can be sold at a price p and the chip market is highly competitive.

(a) Calculate the derivative of profits with respect to a and its sign.
(b) Calculate the derivative of output with respect to o and its sign.

(c) Suppose that there are n identical chip producers, let D(p) be the
demand function, and let p(a) be the competitive equilibrium price. Cal-
culate (dp/dc) and its sign.

5.10. Suppose that a firm behaves competitively in its output market and
its factor market. Suppose the price of each input increases, and let dw;
be the increase in factor price i. Under what conditions will the profit
maximizing output decrease?

5.11. A firm uses 4 inputs to produce 1 output. The production function
is f(z1,2,23,24) = min{zy, x2} + min{zs, x4}

(a) What is the vector of conditional factor demands to produce 1 unit
of output when the factor price vector is w = (1,2, 3,4)?



Exercises 79

(b) What is the cost function?
(c) What kind of returns to scale does this technology exhibit?

(d) Another firm has a production function f(z;, z2, z3,Z4) = min{z; +
Z3,Z3 + T4} What is the vector of conditional factor demands to produce
1 unit of output when prices are w = (1,2, 3,4)?

(e) What is the cost function for this firm?
(f) What kind of returns to scale does this technology represent?

5.12. A factor of production i is called inferior if the conditional demand
for that factor decreases as output increases; that is, dz,(w,y)/dy < 0.

(a) Draw a diagram indicating that inferior factors are possible.

(b) Show that if the technology is constant returns to scale, then no
factors can be inferior.

(c) Show that if marginal cost decreases as the price of some factor
increases, then that factor must be inferior.

5.13. Consider a profit-maximizing firm that produces a good which is
sold in a competitive market. It is observed that when the price of the
output good rises, the firm hires more skilled workers but fewer unskilled
workers. Now the unskilled workers unionize and succeed in getting their
wage increased. Assume that all other prices remain constant.

(a) What will happen to the firm’s demand for unskilled workers?
(b) What will happen to the firm’s supply of output?

5.14. You have a time series of observations on changes in output, Ay,
changes in cost, Ac, changes in factor prices, Aw,, and the levels of factor
demands, z, for i = 1...n. How would you construct an estimate of
marginal cost, dc(w,y)/8y, in each period?

5.15. Compute the cost function for the technology

V(y) = {($17$27I3):$1 + min(z27x3) Z 3y}-

5.16. For each cost function determine if it is homogeneous of degree one,
monotonic, concave, and/or continuous. If it is, derive the associated pro-
duction function.

(a) c(w,y) =y'/*(wrwz)¥/*
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(b) c(w,y) = y(w1 + wrwy + w2)
(c) c(w,y) =y(wie™ + we)
(d) c(w,y) = y(wr — ywr1wz + wg)
(€) c(w,y) = (y+ 3)vwrwz

5.17. A firm has an input requirement set given by V(y) = {x > 0:az; +
bzy > y?}.

(a) What is the production function?
(b) What are the conditional factor demands?

(c) What is the cost function?



CHAPTER 6

DUALITY

In the last chapter we investigated the properties of the cost function,
the function that measures the minimum cost of achieving a desired level
of production. Given any technology, it is straightforward, at least in
principle, to derive its cost function: we simply solve the cost minimization
problem.

In this chapter we show that this process can be reversed. Given a cost
function we can “solve for” a technology that could have generated that cost
function. This means that the cost function contains essentially the same
information that the production function contains. Any concept defined in
terms of the properties of the production function has a “dual” definition
in terms of the properties of the cost function and vice versa. This general
observation is known as the principle of duality. It has several important
consequences that we will investigate in this chapter.

The duality between seemingly different ways of representing economic
behavior is useful in the study of consumer theory, welfare economics, and
many other areas in economics. Many relationships that are difficult to
understand when looked at directly become simple, or even trivial, when
looked at using the tools of duality.
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6.1 Duality

In Chapter 4 we described a set VO(y) which we argued was an “outer
bound” to the true input requirement set V(y). Given data (w*, x%,y?),
VO(y) is defined to be

VO(y) = {x: w'x > w'x" for all ¢ such that y* < y}.

It is straightforward to verify that V' O(y) is a closed, monotonic, and convex
technology. Furthermore, as we observed in Chapter 4, it contains any
technology that could have generated the data (w?,xt,yt) fort =1,---,T.

If we observe choices for many different factor prices, it seems that VO(y)
should “approach” the true input requirement set in some sense. To make
this precise, let the factor prices vary over all possible price vectors w > 0.
Then the natural generalization of VO becomes

V*(y) = {x: wx > wx{w,y) = ¢(w,y) for all w > 0}.
What is the relationship between V*(y) and the true input requirement
set V(y)? Of course, V*(y) will contain V' (y), as we showed in Chapter 4,
page 62. In general, V*(y) will strictly contain V(y). For example, in

Figure 6.1A we see that the shaded area cannot be ruled out of V*(y) since
the points in this area satisfy the condition that wx > c(w,y).

FACTOR 2 FACTOR 2

" N

FACTOR 1 FACTOR1
Figure Relationship between V(y) and V*(y). In general V*(y)
6.1 will strictly contain V(y).

The same is true for Figure 6 1B. The cost function can only contain
information about the economucally relevant sections of V (y), namely, those
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factor bundles that could actually be the solution to a cost minimization
problem, i.e., that could actually be conditional factor demands.

However, suppose that our original technology is convex and monotonic.
In this case V*(y) will equal V(y). This is because, in the convex, mono-
tonic case, each point on the boundary of V (y) is a cost-minimizing factor
demand for some price vector w > 0. Thus, the set of points where
wx > c¢(w,y) for all w > 0 will precisely describe the input requirement
set. More formally:

When V(y) equals V*(y). Suppose V(y) is a regular, convex, monotonic
technology. Then V*(y) = V(y).

Proof. (Sketch) We already know that V*(y) contains V(y)}, so we only
have to show that if x is in V*(y) then x must be in V(y). Suppose
that x is not an element of V(y). Then since V(y) is a closed convex
set satisfying the monotonicity hypothesis, we can apply a version of the
separating hyperplane theorem (see Chapter 26, page 483) to find a vector
w* > 0 such that w*x < w*z for all z in V(y). Let z* be a point in
V(y) that minimizes cost at the prices w*. Then in particular we have
w*x < w*z* = ¢(w*,y). But then x cannot be in V*(y), according to the
definition of V*(y). |

This proposition shows that if the original technology is convex and
monotonic, then the cost function associated with the technology can be
used to completely reconstruct the original technology. If we know the
minimal cost of operation for every possible price vector w, then we know
the entire set of technological choices open to the firm.

This is a reasonably satisfactory result in the case of convex and mono-
tonic technologies, but what about less well-behaved cases? Suppose we
start with some technology V(y), possibly nonconvex. We find its cost
function ¢(w,y) and then generate V*(y). We know from the above re-
sults that V*(y) will not necessarily be equal to V(y), unless V' (y) happens
to have the convexity and monotonicity properties. However, suppose we
define

¢*(w,y) =minwx
such that x is in V*(y).

What is the relationship between ¢*(w,y) and c(w,y)?

When c(w,y) equals c*(w,y). It follows from the definition of the
functions that c*(w,y) = c(w,y).

Proof. It is easy to see that c¢*(w,y) < ¢(w,y); since V*(y) always con-
tains V(y), the minimal cost bundle in V*(y) must be at least as small
as the minimal cost bundle in V(y). Suppose that for some prices w’,
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the cost-minimizing bundle x’ in V*(y) has the property that w'x’ =
c*(w',y) < c(w',y). But this can’t happen, since by definition of V*(y),
w'x' > c(w',y). §

This proposition shows that the cost function for the technology V(y) is
the same as the cost function for its convexification V*(y). In this sense,
the assumption of convex input requirement sets is not very restrictive from
an economic point of view.

Let us summarize the discussion to date:

(1) Given a cost function we can define an input requirement set V*(y).

(2) If the original technology is convex and monotonic, the constructed
technology will be identical with the original technology.

(3) If the original technology is nonconvex or nonmonotonic, the con-
structed input requirement will be a convexified, monotonized version of
the original set, and, most importantly, the constructed technology will
have the same cost function as the original technology.

We can summarize the above three points succinctly with the fundamen-
tal principle of duality in production: the cost function of a firm summa-
rizes all of the economically relevant aspects of its technology.

6.2 Sufficient conditions for cost functions

We have seen in the last section that the cost function summarizes all of the
economically relevant information about a technology. We have seen in the
previous chapter that all cost functions are nondecreasing, homogeneous,
concave, continuous functions of prices. The question arises: suppose that
you are given a nondecreasing, homogeneous, concave, continuous function
of prices—is it necessarily the cost function of some technology?

Another way to phrase this question is: are the properties described in
the last chapter a complete list of the implications of cost-minimizing be-
havior? Given a function that has those properties, must it necessarily arise
from some technology? The answer is yes, and the following proposition
shows how to construct such a technology.

When ¢(w,y) is a cost function. Let ¢(w,y) be a differentiable func-
tion satisfying

1) ¢(tw,y) = td(w,y) for allt > 0;

2) p(w,y) >0 forw>0andy>0;
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8) ¢(w',y) > p(w,y) for w' > w;
4) &(w,y) is concave in w.

Then ¢(w,y) is the cost function for the technology defined by V*(y) =
{x>0:wx > ¢(w,y), for all w > 0}.

Proof. Given a w > 0 we define

9o(w,y) 3¢(w,y)>

ow, = Bw,

x(w,y) = (

and note that since ¢(w,y) is homogeneous of degree 1 in w, Euler’s law
implies that ¢(w,y) can be written as

"\ 9p(w,y)
d(w,y) = ¥ w, % =wx(w,y).

(For Euler’s law, see Chapter 26, page 481.) Note that the monotonicity
of ¢(w,y) implies x(w,y) > 0.

What we need to show is that for any given w’ > 0, x(w’,y) actually
minimizes w'x over all x in V*(y):

d(w',y) = w'x(w',y) < w'x for all x in V*(y).

First, we show that x(w’,y) is feasible; that is, x(w’,y) is in V*(y). By the
concavity of ¢(w,y) in w we have

(W', y) < ¢(w,y) + Dp(w,y)(w' — w)

for all w > 0. (See Chapter 27, page 496.)
Using Euler’s law as above. this reduces to

o(w',y) < w'x(w,y) for all w > 0.

It follows from the definition of V*(y), that x(w’,y) is in V*(y).
Next we show that x(w,y) actually minimizes wx over all x in V*(y).
If x is in V*(y), then by definition it must satisfy

WX > ¢(w,y).

But by Euler’s law,
d(w,y) = wx(w,y).

The above two expressions imply
wx > wx(w,y)

for all x in V*(y) as required. Il
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6.3 Demand functions

The proposition proved in the last section raises an interesting question.
Suppose you are given a set of functions (g;(w,y)) that satisfy the prop-
erties of conditional factor demand functions described in the last chapter,
namely, that they are homogeneous of degree 0 in prices and that

()

is a symmetric negative semidefinite matrix. Are these functions necessarily
factor demand functions for some technology?

Let us try to apply the above proposition. First, we construct a candidate
for a cost function:

d(w,y) =D wigi(w,y).
=1

Next, we check whether it satisfies the properties required for the propo-
sition just proved.

1) Is ¢(w,y) homogeneous of degree 1 in w? To check this we look at
Ptw,y) = 3. tw;g;(tw, y). Since the functions g;(w,y) are by assump-
tion homogeneous of degree 0, g;(tw,y) = g;(w, y) so that

$(tw,y) =ty _wgi(w,y) = td(w,y).

=1
2} Is ¢(w,y) > 0 for w > 07 Since g;(w,y) > 0, the answer is clearly
yes.

3) Is ¢(w,y) nondecreasing in w;? Using the product rule, we compute

9d(w,y) _ - 69, (w,y . 29 (W,y)
“ow wy)+z 9i(w,y) +Z w;j ~ow;

Since g,(w,y) is homogeneous of degree 0, the last term vanishes and
9:(W,y) is clearly greater than or equal to 0.

4) Finally is ¢(w,y) concave in w? To check this we differentiate ¢(w, y)

twice to get
0%¢ \ _ (9g:i(w,y)
Ow; Ow; Ow;
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For concavity we want these matrices to be symmetric and negative
semidefinite, which they are by hypothesis.

Hence, the proposition proved in this section applies and there is a tech-
nology V*(y) that yields (g,(w,y)) as its conditional factor demands. This
means that the properties of homogeneity and negative semidefiniteness
form a complete list of the restrictions on demand functions imposed by
the model of cost-minimizing behavior.

Of course, essentially the same results hold for profit functions and (un-
conditional) demand and supply functions. If the profit function obeys the
restrictions described in Chapter 3, page 40, or, equivalently, if the demand
and supply functions obey the restrictions in Chapter 3, page 46, then there
must exist a technology that generates this profit function or these demand
and supply functions.

EXAMPLE: Applying the duality mapping
Suppose we are given a specific cost function c(w,y) = ywfw;™*. How
can we solve for its associated technology?” According to the derivative

property

1—-a
w
z1(w,y) = aywi 'wy "% = ay (i)
uy

satwy) = (1 - ahpuiu;® = (- aly (2)

We want to eliminate ws/w; from these two equations and get an equation
for y in terms of z; and x,. Rearranging each equation gives

1
wa rp\1°
w1 ay

Setting these equal to each other and raising both sides to the —a(1 — a)
power,
ot x5 °

a~oy~¢ - (1 _ a)(l—a)yl—a’

or,
(a*(1 - )~y = 232},

This is just the Cobb-Douglas technology.
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EXAMPLE: Constant returns to scale and the cost function

Since the cost function tells us all of the economically relevant information
about the technology, we can try to interpret various restrictions on costs in
terms of restrictions on technology. In Chapter 5, page 66, we showed that
if the technology exhibited constant returns to scale, then the cost function
would have the form c(w)y. Here we show that the reverse implication is
also true.

Constant returns to scale. Let V(y) be conver and monotonic; then
if c(w,y) can be written as yc(w),V(y) must ezhibit constant returns to
scale.

Proof. Using convexity, monotonicity, and the assumed form of the cost
function assumptions, we know that

Vy) =V*(y) = {x:w-x > yec(w) for all w > 0}.

We want to show that, if x is in V*(y), then tx is in V*{ty). If x is in
V*(y), we know that wx > yc(w) for all w > 0. Multiplying both sides of
this equation by ¢t we get: wix > tyc(w) for all w > 0. But this says tx is
in V*(ty). 1

EXAMPLE: Elasticity of scale and the cost function

Given a production function f(x) we can consider the local measure of
returns to scale known as the elasticity of scale:

df(tx) t
) = = 7o) b

which was defined in Chapter 1, page 16. The technology exhibits locally
decreasing, constant, or increasing returns to scale as e(x) is less than,
equal to, or greater than one.

Given some vector of factor prices we can compute the cost function of
the firm c¢(w,y). Let x* be the cost-minimizing bundle at (w,y). Then we
can calculate e(x*) by the following formula:

e(x*) = cw,y)/y _ AC(y)
oc(w,y)/0y  MC(y)
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To see this, we perform the differentiation indicated in the definition of
e(x):
af(x*) .
Y ‘fa'(x_.)xi
- 0%
flx*)

Since x* minimizes costs it satisfies the first-order conditions that w; =
/\Bf z:z: . Furthermore, by the envelope theorem, A = dc(w,y)/dy. (See

Chaptzer 5, page 76.) Thus,

o) = =1 W% _ cWW)/f(x") _ AC(y)

e(x*) =

AM(x*)  Bc(w,y)/0y  MC(y)

6.4 Geometry of duality

In this section we will examine geometrically the relationship between a
firm’s technology as summarized by its production function and its eco-
nomic behavior as summarized by its cost function.

In Figure 6.2 we have illustrated the isoquant of a firm and an isocost
curve for the same level of output y. The slope at a point (w},w3) on this
isocost curve is given by

Oc(w™,y
dwa(w}) _JBE‘) __z(why)
dw,  Gc(Wry) T za(wr,y)’
wy

PRICE 2 FACTOR 2
Isocost

Isoquant

PRICE 1 FACTOR 1

Curvature of isoquant and isocost curves. The more
curved the isoquant, the less curved the isocost curve.

Figure
6.2
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On the other hand, an isoquant is defined by:

fx)=y.

The slope of an isoquant at a point x* is given by

9f(x)
dea(z]) _ ;i

dz, CAf(x)
T2
Now if (z},z3) is a cost-minimizing point at prices (w},ws3), we know it
satisfies the first-order condition

wi = B
L2
Notice the nice duality: the slope of the isoquant curve gives the ratio of
the factor prices while the slope of the isocost curve gives the ratio of the
factor levels.

What about the curvature of the isoquant and the isocost curves? It
turns out that their curvatures are inversely related: if the isocost curve is
very curved, the isoquant will be rather flat and vice versa. We can see this
by considering some specific (wy,w2) on the isocost curve and then moving
to some (w],w4) on the isocost curve that is fairly far away. Suppose we
find that the slope of the isocost curve doesn’t change very much—i.e., the
isocost curve has little curvature. Since the slope of the isocost curve gives
us the ratio of factor demands, this means that the cost-minimizing bundles
must be rather similar. Referring to Figure 6.2 we see that this means that
the isoquant must be rather sharply curved. In the extreme case we find
that the cost function of the Leontief technology is a linear function and
that an L-shaped cost function corresponds to a linear technology.

EXAMPLE: Production functions, cost functions, and conditional fac-
tor demands

Suppose we have a nice smooth convex isoquant. Then the isocost curve is
also convex and smooth and the conditional factor demand curves are well
behaved as in Figure 6.3.

Suppose that the isoquant has a flat spot, so that at some combination
of factor prices there is no unique bundle of factor demands. Then the
isocost curve must be nondifferentiable at this level of factor prices, and
the conditional factor demand functions are multivalued as in Figure 6.4.
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Xa w, w,/w,
Isoquant Isocost Factor demand
Xy w, X4
Technology, costs, and demand. Case of smooth, convex Figure
isoquant. 6.3
X2 w, w,/w,
« \ Isoguant Isocost
Slope = —w;/w; Factor demand
X5 t-————-
|
) : Wy |———- \ wilwy F-——~=
o | | |
H £ 1 | i
RN | | |
! ? S 1 i t
L | | |
: L h 1 I |
X} X4 Xy w; w; X3 X3 X4

Technology, costs, and demand. Case of isoquant with flat
spot. There is a kink at the isocost curve at the prices equal
to the slope of the flat spot. At these factor prices, there are
several cost-minimizing bundles.

Suppose that the isoquant has a kink at some point. Then for some range
of prices, a fixed bundle of inputs will be demanded. This means that the
isocost curve must have a flat spot as depicted in Figure 6.5.

Suppose the isoquant is nonconvex over some range. Then the isocost
curve has a kink at some point and the conditional factor demands are
discontinuous and multivalued as depicted in Figure 6.6. Notice how the
cost function for this technology is indistinguishable from the cost function
for the convexification of this technology by comparing Figures 6.4 and 6.6.

« w f

6.5 The uses of duality

The fact that there is a dual relationship between the description of a tech-
nology and its associated cost function has several important consequences
for production economics. We have touched on some of these briefly in
passing, but it is worthwhile to summarize them here.

First, having two different ways to describe technological properties is
very convenient theoretically since some sorts of arguments are much easier
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X3 w,/w,
Isoquant
AT et Factor demand
A
! wiwy - —— )
| t
| 1
| 1
| |
| |
)] 1
x; Xy X
Technology, costs, and demand. Case of kinked isoquant.
There is a flat spot in the isocost curve and several prices at
which the same bundle will minimize costs.
X w, wy/w,

Isoquant Isocost

Slope = ~w;/w}

Factor demand

wy - wiwy -

|
|
|
|
I
t
{
i
Il

-,

X

I
I
1
I
I
I
i
1
Xy X X4 wy w, Xy Xy
Technology, costs, and demand. Case of nonconvex iso-
quant. The isocost curve looks just the same as if there were a
flat spot, but the factor demand function is now discontinuous.

to demonstrate by using a cost function or profit function than by using
a direct representation of technology. For example, consider the example
given earlier that expected profits would be higher with a fluctuating price
than with a price stabilized at the expected value. This is a trivial conse-
quence of the convexity of the profit function; the argument is substantially
less trivial if we approach this situation using a direct representation of the
technology.

Second, dual representations of behavior such as the cost function and
the profit function are very useful in equilibrium analysis since they sub-
sume the behavioral assumptions in the functional specification. If we want
to examine the way in which a particular tax policy affects firm profits, for
example, we can investigate how the taxes affect the prices the firm faces
and then see how those particular changes in prices affect the profit func-
tion. We don’t have to solve any maximization problems—they are already



Exercises 93

“solved” in the specification of the profit function.

Third, the fact that the homogeneity, monotonicity and curvature prop-
erties exhaust the properties of the cost and profit functions makes it much
simpler to verify certain sorts of propositions about firm behavior. We can
simply ask whether the particular property in question is a consequence
of the homogeneity, monotonicity, or curvature of the cost or profit func-
tion. If it is not, then the property does not follow simply from maximizing
behavior.

Fourth, the fact that the profit and cost functions can be characterized by
three relatively simple mathematical conditions is of great help in generat-
ing parametric forms for representing technologies. In order to completely
specify a technology, for example, all that is necessary to do is to specify
a continuous homogeneous, monotonic, concave function of factor prices.
This may be much more convenient than specifying a production function
representation of a technology. Such parametric representations may be of
considerable help in calculating examples or in econometric work.

Fifth, dual representations usually turn out to be more satisfactory for
econometric work. The reason is that the variables that enter into the dual
specification—the price variables—are generally thought to be exogenous
variables with respect to the choice problem of the firm. If factor markets
are competitive, then the firm is supposed to take factor prices as given and
choose levels of inputs, so that the factor prices may not be correlated with
the error terms in the statistical production relationship. This property is
very desirable from a statistical point of view. We will investigate further
in Chapter 12.

Notes

The basic duality between cost and production functions was first shown
rigorously by Shephard (1953). See Diewert (1974) for the historical devel-
opment of this topic and a general modern treatment.

Exercises

6.1. The cost function is c{w; ., ws, y) = min{wy, ws }y. What is the produc-
tion function? What are the conditional factor demands?

6.2. The cost function is ¢(w;, w2, y) = y[w; +ws]. What are the conditional
factor demands? What is the production function?

6.3. The cost function is c(w;, we,y) = wiwly. What do we know about a
and b?



CHAPTER 7

UTILITY
MAXIMIZATION

In this chapter we begin our examination of consumer behavior. In the
theory of a competitive firm, the supply and demand functions were de-
rived from a model of profit-maximizing behavior and a specification of
the underlying technological constraints. In the theory of the consumer we
will derive demand functions by considering a model of utility-maximizing
behavior coupled with a description of underlying economic constraints.

7.1 Consumer preferences

We consider a consumer faced with possible consumption bundles in some
set X, his consumption set. In this book we usually assume that X is
the nonnegative orthant in R*, but more specific consumption sets may
be used. For example, we might only include bundles that would give the
consumer at least a subsistence existence. We will always assume that X
is a closed and convex set.

The consumer is assumed to have preferences on the consumption bun-
dles in X. When we write x > y, we mean “the consumer thinks that the
bundle x is at least as good as the bundle y.” We want the preferences to
order the set of bundles. Therefore, we need to assume that they satisfy
certain standard properties.
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COMPLETE. Forallx andy mn X, eitherx >y ory = x or both.
REFLEXIVE. Foralxm X, x> x.

TRANSITIVE. Foradix,y, andz m X, f x =y andy = z, then
X > z.

The first assumption just says that any two bundles can be compared, the
second is trivial, and the third is necessary for any discussion of preference
mazimazation; if preferences were not transitive, there might be sets of
bundles which had no best elements.

Given an ordering = describing “weak preference,” we can define an
ordering = of strict preference simply by defining x > y to mean not
y = x. Weread x ~ y as “x is strictly preferred to y.” Similarly, we define
a notion of indifference by x ~y if and only if x = y and y > x.

We often wish to make other assumptions on consumers’ preferences; for
example.

CONTINUITY. Forally wm X, the sets {x:x =y} and {x:x <y}
are closed sets. It follows that {x:x >y} and {x:x <y} are open sets.

This assumption is necessary to rule out certain discontinuous behavior;
it says that if (x*) is a sequence of consumption bundles that are all at
least as good as a bundle y, and if this sequence converges to some bundle
x*, then x* is at least as good as y.

The most important consequence of continuity is this: if y is strictly
preferred to z and if x is a bundle that is close enough to y, then x must
be strictly preferred to z. This is just a restatement of the assumption that
the set of strictly preferred bundles is an open set. For a brief discussion
of open and closed sets, see Chapter 26, page 478.

In economic analysis it is often convenient to summarize a consumer’s
behavior by means of a utility function; that is, a function v : X — R
such that x > y if and only if u(x) > u(y). It can be shown that if
the preference ordering is complete, reflexive, transitive, and continuous,
then it can be represented by a continuous utility function. We will prove
a weaker version of this assertion below. A utility function is often a
very convenient way to describe preferences, but it should not be given
any psychological interpretation. The only relevant feature of a utility
function is its ordinal character. If u(x) represents some preferences > and
f: R — R is a monotonic function, then f(u(x)) will represent exactly the
same preferences since f(u(x)) > f(u(y)) if and only if u(x) > u(y).

There are other assumptions on preferences that are often useful; for
example:
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WEAK MONOTONICITY. Ifx>y thenx>y.
STRONG MONOTONICITY. Ifx>yandx#Yy, thenx>y.

‘Weak monotonicity says that “at least as much of everything is at least
as good.” If the consumer can costlessly dispose of unwanted goods, this
assumption is trivial. Strong monotonicity says that at least as much of
every good, and strictly more of some good, is strictly better. This is
simply assuming that goods are good.

If one of the goods is a “bad,” like garbage, or pollution, then strong
monotonicity will not be satisfied. But in these cases, redefining the good
to be the absence of garbage, or the absence of pollution, will often result in
preferences over the re-defined good that satisfies the strong monotonicity
postulate.

Another assumption that is weaker than either kind of monotonicity is
the following:

LOCAL NONSATIATION. Given any x in X and any € > 0, then
there is some bundle y in X with |x —y| < € such that y > x.!

Local nonsatiation says that one can always do a little bit better, even
if one is restricted to only small changes in the consumption bundle. You
should verify that strong monotonicity implies local nonsatiation but not
vice versa. Local nonsatiation rules out “thick” indifference curves.

Here are two more assumptions that are often used to guarantee nice
behavior of consumer demand functions:

CONVEXITY. Givenx,y, andz in X such that x > z and y > z,
then it follows that tx + (1 —t)y = 2z for all0 <t < 1.

STRICT CONVEXITY. Givenx#yandzin X, ifx >z andy > z,
thentx+ (1 —t)y =z forall0 <t < 1.

Given a preference ordering, we often display it graphically. The set
of all consumption bundles that are indifferent to each other is called an
indifference curve. One can think of indifference curves as being level
sets of the utility function; they are analogous to the isoquants used in
production theory. The set of all bundles on or above an indifference curve,
{xin X : x = y}, is called an upper contour set. This is analogous to
the input requirement set used in production theory.

Convexity implies that an agent prefers averages to extremes, but, other
than that, it has little economic content. Convex preferences may have in-
difference curves that exhibit “flat spots,” while strictly convex preferences

1 The notation |x ~ y| means the Euclidean distance between x and y.
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have indifference curves that are strictly rotund. Convexity is a general-
ization of the neoclassical assumption of “diminishing marginal rates of
substitution.”

EXAMPLE: The existence of a utility function

Existence of a utility function. Suppose preferences are complete, re-
flezive, transitive, continuous, and strongly monotonic. Then there exists a
continuous utility function u : Rﬁ —+ R which represents those preferences.

Proof. Let e be the vector in R% consisting of all ones. Then given any
vector x let u(x) be that number such that x ~ u(x)e. We have to show
that such a number exists and is unique.

Let B={tinR:te > x}and W = {¢tin R : x > te}. Then strong
monotonicity implies B is nonempty; W is certainly nonempty since it
contains 0. Continuity implies both sets are closed. Since the real line is
connected, there is some t, such that t,e ~ x. We have to show that this
utility function actually represents the underlying preferences. Let

u(x) =t, wheret,e~x
u(y) =t, wherete~y.

Then if t, < t,, strong monotonicity shows that ;e < t e, and transitivity
shows that
Xx~te <tye~y.

Similarly, if x > y, then t;e > t, e so that ¢, must be greater than ¢,.
The proof that u(x) is a continuous function is somewhat technical and
is omitted. il

EXAMPLE: The marginal rate of substitution

Let u(zi,...,zx) be a utility function. Suppose that we increase the
amount of good i; how does the consumer have to change his consump-
tion of good j in order to keep utility constant?

Following the construction in Chapter 1, page 11, we let dr; and dx; be
the changes in z; and z;. By assumption, the change in utility must be
Z€ro, SO :

Bu(x) do + Ou(x

) gp.
6(8,; 8m,~ d.’E] =0
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i,

dr; Ou(x)
Zj
This expression is known as the marginal rate of substitution between
goods ¢ and j.
The marginal rate of substitution does not depend on the utility function
chosen to represent the underlying preferences. To prove this, let v(u) be a

monotonic transformation of utility, The marginal rate of substitution for
this utility function is

Hence

v o)

dfl)j

R zl — 2
dr; o 0u(x)  Ou(x)’
v (u) 63:,- T j

7.2 Consumer behavior

Now that we have a convenient way to represent preferences we can begin
to investigate consumer behavior. Qur basic hypothesis is that a rational
consumer will always choose a most preferred bundle from the set of af-
fordable alternatives.

In the basic problem of preference maximization, the set of affordable
alternatives is just the set of all bundles that satisfy the consumer’s budget
constraint. Let m be the fixed amount of money available to a consumer,
and let p = (p1,- -, pr) be the vector of prices of goods, 1,---,k. The set
of affordable bundles, the budget set of the consumer, is given by

B={xin X:px<m.}
The problem of preference maximization can then be written as:

max u(x)
such that px <m
x is in X.

Let us note a few basic features of this problem. The first issue is
whether there will exist a solution to this problem. According to Chap-
ter 27, page 506, we need to verify that the objective function is continuous
and that the constraint set is closed and bounded. The utility function is
continuous by assumption, and the constraint set is certainly closed. If
p; >0fori=1,...,k and m > 0, it is not difficult to show that the con-
straint set will be bounded. If some price is zero, the consumer might want
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an infinite amount of the corresponding good. We will generally ignore
such boundary problems.

The second issue we examine concerns the representation of preferences.
Here we can observe that the maximizing choice x* will be independent
of the choice of utility function used to represent the preferences. This is
because the optimal x* must have the property that x* > x for any x in
B, so any utility function that represents the preferences > must pick out
x* as a constrained maximum.

Third, if we multiply all prices and income by some positive constant,
we will not change the budget set, and thus we cannot change the set of
optimal choices. That is, if x* has the property that x* > x for all x
such that px < m, then x* > y for all y such that ipy < tm. Roughly
speaking, the optimal choice set is “homogeneous of degree zero” in prices
and income.

By making a few regularity assumptions on preferences, we can say more
about the consumer’s maximizing behavior. For example, suppose that
preferences satisfy local nonsatiation; can we ever get an x* where px* <
m? Suppose that we could; then, since x* costs strictly less than m, every
bundle in X close enough to x* also costs less than m and is therefore
feasible. But, according to the local nonsatiation hypothesis, there must
be some bundle x which is close to x* and which is preferred to x*. But
this means that x* could not maximize preferences on the budget set B.

Therefore, under the local nonsatiation assumption, a utility-maximizing
bundle x* must meet the budget constraint with equality. This allows us
to restate the consumer’s problem as

v(p,m) = max u(x)
such that px = m.

The function v(p,m) that gives us the maximum utility achievable at
given prices and income is called the indirect utility function. The
value of x that solves this problem is the consumer’s demanded bundle:
it expresses how much of each good the consumer desires at a given level
of prices and income. We assume that there is a unique demanded bundle
at each budget; this is for purposes of convenience and is not essential to
the analysis.

The function that relates p and m to the demanded bundle is called
the consumer’s demand function. We denote the demand function by
x(p,m). As in the case of the firm, we need to make a few assumptions
to make sure that this demand function is well-defined. In particular, we
will want to assume that there is a unique bundle that maximizes utility.
We will see later on that strict convexity of preferences will ensure this
behavior.

Just as in the case of the firm, the consumer’s demand function is ho-
mogeneous of degree 0 in (p.m). As we have seen above, multiplying all
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prices and income by some positive number does not change the budget
set at all and thus cannot change the answer to the utility maximization
problem.

As in the case of production we can characterize optimizing behavior by
calculus, as long as the utility function is differentiable. The Lagrangian
for the utility maximization problem can be written as

A

LI

L = u(x) - A(px —m),

where A is the Lagrange multiplier. Differentiating the Lagrangian with
respect to z, gives us the first-order conditions

du(x)

oz, —Ap,=0 fori=1,... k.

In order to interpret these conditions we can divide the " first-order
condition by the j** first-order condition to eliminate the Lagrange multi-
plier. This gives us

du(x*)
T D I
to==— f =1,...,k
au(x* p] or Z’] y b

o

The fraction on the left is the marginal rate of substitution between good
1 and j, and the fraction on the right might be called the economic rate
of substitution between goods 2 and j. Maximization implies that these
two rates of substitution be equal. Suppose they were not; for example,
suppose

Ou(x*)
Oz, _l?eg_&
171 p,’
b,

) Ou(x*)
Ty
Then, if the consumer gives up one unit of good : and purchases one unit
of good j, he or she will remain on the same indifference curve and have an
extra dollar to spend. Hence, total utility can be increased, contradicting
maximization.

Figure 7.1 illustrates the argument geometrically. The budget line of the
consumer is given by {x : p1z; +paz2 = m}. This can also be written as the
graph of an implicit function: o = m/ps — (p1/p2)z1. Hence, the budget
line has slope —p; /p2 and vertical intercept m/p,. The consumer wants to
find the point on this budget line that achieves highest utility. This must
clearly satisfy the tangency condition that the slope of the indifference
curve equals the slope of the budget line. Translating this into algebra
gives the above condition.
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Preference maximization. The optimal consumption bundle
will be at a point where an indifference curve is tangent to the
budget constraint.

Finally, we can state the condition using vector terminology. Let x* be
an optimal choice, and let dx be a perturbation of x* that satisfies the
budget constraint. Hence, we must have

p(x* £ dx) =m.

Since px = m, this equation implies that pdx = 0, which in turn implies
that dx must be orthogonal to p.

For any such perturbation dx, utility cannot change, or else x* would
not be optimal. Hence, we also have

Du(x*)dx =0

which says that Du(x*) is also orthogonal to dx. Since this is true for all
perturbations for which pdx = 0, we must have Du(x*) proportional to
P, just as we found in the first-order conditions.

The second-order conditions for utility maximization can be found by
applying the results of Chapter 27, page 494. The second derivative of the
Lagrangian with respect to goods ¢ and j is 8%u(x)/8z,0z,. Hence, the
second-order condition can be written as

h'D?u(x*)h < 0 for all h such that ph = 0. (7.1)

This condition requires that the Hessian matrix of the utility function is
negative semidefinite for all vectors h orthogonal to the price vector. This is

Figure
7.1
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essentially equivalent to the requirement that u(x) be locally quasiconcave.
Geometrically, the condition means that the upper contour set must lie
above the budget hyperplane at the optimal x*.

As usual the second-order condition can also be expressed as a condition
involving the bordered Hessian. Examining Chapter 27, page 500, we see
that this formulation says that (7.1) can be satisfied as a strict inequality if
and only if the naturally ordered principal minors of the bordered Hessian
alternate in sign. Hence,

-y un uz | >0,
—Pp2 U1 U2

—P1 Uil U2 U3
—Pp2 U1 U2 U223
—p3 Uz1 U2 U33

<0,

and so on.

7.3 Indirect utility

Recall the indirect utility function defined earlier. This function, v(p,m),
gives maximum utility as a function of p and m.

Properties of the indirect utility function.

(1) v(p, m) is nonincreasing in p; that is, if p’ > p,v(p’,m) < v(p,m).
Similarly, v(p, m) is nondecreasing in m.

(2) v(p,m) is homogeneous of degree 0 in (p,m).

(3) v(p,m) is quasiconvex in p; that is, {p : v(p,m) < k} is a convex
set for all k.

(4) v(p,m) is continuous at all p > 0,m > 0.

Proof.

(1) Let B={x:px <m} and B’ = {x: p'x <m} for p’ > p. Then B’ is
contained in B. Hence, the maximum of u(x) over B is at least as big as
the maximum of u(x) over B’. The argument for m is similar.

(2) If prices and income are both multiplied by a positive number, the
budget set doesn’t change at all. Thus, v(tp,tm) = v(p,m) for t > 0.
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(3) Suppose p and p’ are such that v(p,m) < k, v(p’,m) < k. Let p” =
tp+ (1 —t)p’. We want to show that v(p”, m) < k. Define the budget sets:

B = {x:px < m}
B ={x:p'x<m}
B" = {x:p"x <m}

We will show that any x in B” must be in either B or B’; that is, that
BuU B’ D B”. Assume not; then x is such that tpx + (1 — ¢)p’x < m but
px > m and p’x > m. These two inequalities can be written as

tpx > tm
1-t)p'x>(1-t)m.

Summing, we find that
tpx+ (1 -t)p'x >m

which contradicts our original assumption.
Now note that

v(p”,m) = max u(x) such that x is in B”
< max u(x) such that x is in BU B’
since BUB' > B”
< k since v(p,m) < k and v(p’,m) < k.

(4) This follows from the theorem of the maximum in Chapter 27, page 506.
|

In Figure 7.2 we have depicted a typical set of “price indifference curves.”
These are just the level sets of the indirect utility function. By property
(1) of the above theorem utility is nondecreasing as we move towards the
origin, and by property (3) the lower contour sets are convex. Note that
the lower contour sets lie to the northeast of the price indifference curves
since indirect utility declines with higher prices.

We note that if preferences satisfy the local nonsatiation assumption,
then v(p, m) will be strctly increasing in m. In Figure 7.3 we have drawn
the relationship between v(p, m) and m for constant prices. Since v(p,m)
is strictly increasing in m, we can invert the function and solve for m
as a function of the level of utility; that is, given any level of utility, w,
we can read off of Figure 7.3 the minimal amount of income necessary to
achieve utility u at prices p. The function that relates income and utility
in this way—the inverse of the indirect utility function—is known as the
expenditure function and is denoted by e(p,u).
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PRICE 2

Vip, m) <k
lower contour set

Vip, m)=k

PRICE 1

Figure Price indifference curves. The indifference curve is all those
7.2 prices such that v(p,m) = k, for some constant k. The lower
contour set consists of all prices such that v(p,m) < k.

uTiLITY

vip, m)

iINCOME

Figure Utility as a function of income. As income increases indi-
7.3 rect utility must increase.

An equivalent definition of the expenditure function is given by the fol-

lowing problem:
e(p,u) =min px
such that u(x) > .

The expenditure function gives the minimum cost of achieving a fixed level

of utility.

The expenditure function is completely analogous to the cost function
we considered in studying firm behavior. It therefore has all the properties
we derived in Chapter 5, page 71. These properties are repeated here for

convenience.

Properties of the expenditure function.

(1) e(p,u) is nondecreasing in p.
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(2) e(p,u) is homogeneous of degree 1 in p.
(8) e(p, u) is concave in p.
(4) e(p,u) is continuous in p, for p > 0.

(5) If h(p,u) is the erpenditure-minimizing bundle necessary to achieve

utility level u at prices p, then h;(p,u) = Q%};,_UZ fori=1,...,k as-
(3
suming the derivative exists and that p; > 0.

Proof. These are exactly the same properties that the cost function ex-
hibits. See in Chapter 5, page 71 for the arguments. lI

The function h{p,u) is called the Hicksian demand function. The
Hicksian demand function is analogous to the conditional factor demand
functions examined earlier. The Hicksian demand function tells us what
consumption bundle achieves a target level of utility and minimizes total
expenditure.

A Hicksian demand function is sometimes called a compensated de-
mand function. This terminology comes from viewing the demand func-
tion as being constructed by varying prices and income so as to keep the
consumer at a fixed level of utility. Thus, the income changes are arranged
to “compensate” for the price changes.

Hicksian demand functions are not directly observable since they depend
on utility, which is not directly observable. Demand functions expressed as
a function of prices and income are observable; when we want to emphasize
the difference between the Hicksian demand function and the usual demand
function, we will refer to the latter as the Marshallian demand function,
x(p,m). The Marshallian demand function is just the ordinary market
demand function we have been discussing all along.

7.4 Some important identities

There are some important identities that tie together the expenditure func-
tion, the indirect utility function, the Marshallian demand function, and
the Hicksian demand function.
Let us consider the utility maximization problem
v(p,m") = max u(x)
such that px < m*.
Let x* be the solution to this problem and let u* = u(x*). Consider the
expenditure minimization problem
e(p,u*) = min px
such that u(x) > u*.
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An inspection of Figure 7.4 should convince you that in nonperverse cases
the answers to these two problems should be the same x*. (A more rigorous
argument is given in the appendix to this chapter.) This simple observation
leads to four important identities:

(1) e(p,v(p,m)) = m. The minimum expenditure necessary to reach
utility v(p, m) is m.

(2) v(p, e(p,u)) = u. The maximum utility from income e(p,u) is u.

(3) z:;(p,m) = hi(p,v(p,m)). The Marshallian demand at income m is
the same as the Hicksian demand at utility v(p, m).

(4) hi(p,u) = z;(p,e(p,u)). The Hicksian demand at utility u is the
same as the Marshallian demand at income e(p, u).

This last identity is perhaps the most important since it ties together
the “observable” Marshallian demand function with the “unobservable”
Hicksian demand function. Identity (4) shows that the Hicksian demand
function—the solution to the expenditure minimization problem—is equal
to the Marshallian demand function at an appropriate level of income—
namely, the minimum income necessary at the given prices to achieve the
desired level of utility. Thus, any demanded bundle can be expressed either
as the solution to the utility maximization problem or the expenditure
minimization problem. In the appendix to this chapter we give the exact
conditions under which this equivalence holds. For now, we simply explore
the consequences of this duality.

It is this link that gives rise to the term “compensated demand function.”
The Hicksian demand function is simply the Marshallian demand functions
for the various goods if the consumer’s income is “compensated” so as to
achieve some target level of utility.

A nice application of one of these identities is given in the next proposi-
tion: ‘

Roy’s identity. If x(p,m) is the Marshallian demand function, then

avgp, m)

Di

Ov(p,m
m

provided, of course, that the right-hand side is well defined and that p; > 0
and m > 0.

zi(pym) = - for i=1,---,k

Proof. Suppose that x* yields a maximal utility of v* at (p*,m*). We
know from our identities that

x(p*,m*) = h(p*,u”). (7.2)
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GOOD 2

Maximizes utility
\ minimizes expenditure

GOOD 1

Maximize utility and minimize expenditure. Normally,
a consumption bundle that maximizes utility will also minimize
expenditure and vice versa.

From another one of the fundamental identities, we also know that

u” = v(p,e(p,u’)).

This identity says that no matter what prices are, if you give the consumer
the minimal income to get utility u* at those prices, then the maximal
utility he can get is u*.

Since this is an identity we can differentiate it with respect to p; to get

bu(p”,m*) | dv(p”,m") de(p”, u’)

0= Op, om Op;

Rearranging, and combining this with identity (7.2), we have

* * * * ae ”‘7’“/’k 6v p*7m* 6 1
zi(p",m") = hi(p”,u") = (gp- ) _BvEP* m*;;afn'

Since this identity is satisfied for all (p*,m*) and since x* = x(p*,m*),
the result is proved. i

The above proof, though elegant, is not particularly instructive. Here is
an alternative direct proof of Roy’s identity. The indirect utility function
is given by

v(p,m) = u(x(p,m)). (7.3)

If we differentiate this with respect to p,, we find

Ov(p,m) x) 0z;
~on Z axz B0, (7.4)

Figure
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Since x(p,m) is the demand function, it satisfies the first-order conditions
for utility maximization. Substituting the first-order conditions into ex-
pression (7.4) gives

k
av(p, 6-771
=A) Py (7.5)

The demand functions also satisfy the budget constraint px(p,m) = m.
Differentiating this identity with respect to p,, we have

k

Oz,
p,m)-i-ZpZ %o, (7.6)
Substitute (7.6) into (7.5) to find
dv(p, m)
) = (o, m). (1)

Now we differentiate (7.3) with respect to m to find
k
dv(p, oz,
p —)\E:pz . (7.8)

Differentiating the budget constraint with respect to m, we have

k

szaxl = L. / (79)

Substituting (7.9) into (7.8) gives us

dv(p,m)
—— = A (7.10)

This equation simply says that the Lagrange multiplier in the first-order
condition is the marginal utility of income. Combining (7.7) and (7.10)
gives us Roy’s identity.

Finally, for one last proof of Roy’s identity, we note that it is an immedi-
ate consequence of the envelope theorem described in Chapter 27, page 501.
The argument given above is just going through the steps of the proof of
this theorem.

7.5 The money metric utility functions

There is a nice construction involving the expenditure function that comes
up in a variety of places in welfare economics. Consider some prices p and
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some given bundle of goods x. We can ask the following question: how
much money would a given consumer need at the prices p to be as well off
as he could be by consuming the bundle of goods x?

Figure 7.5 tells us how to construct the answer to this question graphi-
cally if we know the consumer’s preferences. We just see how much money
the consumer would need to reach the indifference curve passing through
x. Mathematically, we simply solve the following problem:

min pz
z

such that u(z) > u(x)

GoOD 2

m(p,x)/p,

GOOD 1

Direct money metric utility function. The money met-
ric utility function gives the minimum expenditure at prices p
necessary to purchase a bundle at least as good as x.

This type of function occurs so often that it is worthwhile giving it a
special name; following Samuelson (1974) we call it the money metric
utility function. It is also known as the “minimum income function,”
the “direct compensation function,” and by a variety of other names. An
alternative definition is

m(p,x) = e(p, u(x)).

It is easy to see that for fixed x, u(x) is fixed, so m(p, x) behaves exactly
like an expenditure function: it is monotonic, homogeneous, concave in p,
and so on. What is not as obvious is that when p is fixed, m(p,x) is in
fact a utility function. The proof is simple: for fixed prices the expenditure
function is increasing in the level of utility: if you want to get a higher utility
level, you have to spend more money. In fact, the expenditure function
is strictly increasing in u for continuous, locally nonsatiated preferences.

Figure
7.5
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Hence, for fixed p, m(p, x) is simply a monotonic transform of the utility
function and is therefore itself a utility function.

This is easily seen in Figure 7.5. All points on the indifference curve
passing through x will be assigned the same level of m(p, x), and all points
on higher indifference curves will be assigned a higher level. This is all it
takes to be a utility function.

There is a similar construct for indirect utility known as the money
metric indirect utility function. It is given by

1(p; q,m) = e(p, v(q, m)).

That is, p(p;q, m) measures how much money one would need at prices
P to be as well off as one would be facing prices q and having income m.
Just as in the direct case, u(p;a, m) behaves like an expenditure function
with respect to p, but now it behaves like an indirect utility function with
respect to q and m, since it is, after all, simply a monotonic transformation
of an indirect utility function. See Figure 7.6 for a graphical example.

A nice feature of the direct and indirect compensation functions is that
they contain only observable arguments. They are specific direct and indi-
rect utility functions that measure something of interest, and there is no
ambiguity regarding monotonic transformations. We will find this feature
to be useful in our discussion of integrability theory and welfare economics.

GOOD 2

uip; a4, mip,

Optimal bundle at prices p
and income p(p, a4, m)

Optimal bundle at prices g
and income m

GOOD 1

Figure Indirect money metric utility function. This function

7.6 gives the minimum expenditure at prices p for the consumer to
be as well off as he would be facing prices q and having income
m.
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EXAMPLE: The Cobb-Douglas utility function

The Cobb-Douglas utility function is given by: u(x;,zs) = 2%x3~%. Since
any monotonic transform of this function represents the same preferences,
we can also write u(z;,z2) = alnz; + (1 - a)Inz,.

The expenditure function and Hicksian demand functions are the same,
up to a change in notation, as the cost function and conditional factor
demands derived in Chapter 4, page 54. The Marshallian demand functions
and the indirect utility function can be derived by solving the following
problem:

max alnz; + (1 —a)lnz,

such that py1x; + peze2 = m.

The first—order conditions are

i_Aplzo
Iy
1~a—/\P2=0,
T2
or
a l-a

P11 P22

Cross multiply and use the budget constraint to get

apaT2 = P11 — apiT;
am = p12;

am
xx(plapz,m) = —.
Y41

Substitute into the budget constraint to get the second Marshallian de-
mand:
(1-a)ym

P2

Substitute into the objective function and eliminate constants to get the
indirect utility function:

1172(171,172»7") =

v(p1,p2,m) =Inm —alnp; — (1 —a)Inp,. (7.11)

A quicker way to derive the indirect utility function is to invert the Cobb-
Douglas cost/expenditure function we derived in Chapter 4, page 54. This
gives us

a,l—a

C(Pl,myu) = Kp1p2 U,
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where K is some constant depending on a. Inverting the expression by
replacing e(p1, p2, u) by m, and u by v(p1, p2,m), we get

m
'U(Pl,chm)

Kpipy®
This is just a monotonic transform of (7.11) as can be seen by taking the
logarithm of both sides.
The money metric utility functions can be derived by substitution. We
have
m(p,x) = Kptllpé_au(zla $2)

_ a l—a_a, l—a
=[PPy T1T5

and .
p(p;q,m) = Kpipy *v(q1, g2, m)

= pipy %q; gy m.

EXAMPLE: The CES utility function

The CES utility function is given by u(z1,z2) = (2§ + z5)'/. Since pref-
erences are invariant with respect to monotonic transforms of utility, we
could just as well choose u(zy,z2) = -};ln(w’l’ + z5).

We have seen earlier that the cost function for the CES technology has
the form c(w, y) = (w]+w5)*/"y where r = p/(p—1). Thus the expenditure
function for the CES utility function must have the form

w

e(p,u) = (p] +p5)""u.
We can find the indirect utility function by inverting the above equation:
v(p,m) = (] +p5) "/ "m.
The demand functions can be found by Roy’s law:
rr(pm) = —20@m)/Op1 _ 2@+ p5)” Ot gy
dv(p,m)/Om (pT +p5)=1/"

r—1
ppm

(el +p5)
The money metric utility functions for the CES utility function can also
be found by substitution:

1 1
m(p,x) = (p] + p5) " (2} +25)>
1 —~—
p(p;a,m) = (p] +p5) 7 (gf + g5)~/"m.
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APPENDIX

Consider the following two problems:

max u(x) (7.12)
such that px < m.
min px (7.13)

such that u(x) > u.

Assume that

(1) the utility function is continuous;

(2) preferences satisfy local nonsatiation;
(3) answers to both problems exist.

Utility maximization implies expenditure minimization. Suppose that
the above assumptions are satisfied. Let x* be a solution to (7.12), and let v =
u(x*). Then x* solves (7.18).

Proof. Suppose not, and let x’ solve (7.13). Hence, px’ < px* and u(x’') >
u(x*). By local nonsatiation there is a bundle x” close enough to x’ so that
px”" < px* = m and u(x") > u(x*). But then x* cannot be a solution to (7.12).

Expenditure minimization implies utility maximization. Suppose that
the above assumptions are satisfied and that x* solves (7.18). Let m = px” and
suppose that m > 0. Then x™ solves (7.12).

Proof. Suppose not, and let x’ solve (7.12) so that u(x’) > u{x*) and px’ =
px* = m. Since px" > 0 and utility is continuous, we can find 0 < ¢ < 1 such
that ptx’ < px* = m and u(tx’) > u(x"). Hence, x* cannot solve (7.13). I

Notes

The argument for the existence of a utility function is based on Wold (1943).
A general theorem on the existence of a utility function can be found in
Debreu (1964).

The importance of the indirect utility function was first recognized by
Roy (1942), Roy (1947). The expenditure function seems to be due to
Hicks (1946). The dual approach to consumer theory described follows
that of McFadden & Winter (1968). The money metric utility function
was used by McKenzie (1957) and Samuelson (1974).
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Exercises

7.1. Consider preferences defined over the nonnegative orthant by (z1,z2) ~
(y1,y2) if z1 +x2 < y1+y2. Do these preferences exhibit local nonsatiation?
If these are the only two consumption goods and the consumer faces positive
prices, will the consumer spend all of his income? Explain.

7.2. A consumer has a utility function u(zy,z2) = max{z;,z2}. What is
the consumer’s demand function for good 1?7 What is his indirect utility
function? What is his expenditure function?

7.3. A consumer has an indirect utility function of the form

m

v(p1,p2, M) = mz—}

What is the form of the expenditure function for this consumer? What is
the form of a (quasiconcave) utility function for this consumer? What is
the form of the demand function for good 17

7.4. Consider the indirect utility function given by

m
pL+Dp2

U(PlaP%m) -

(a) What are the demand functions?
(b) What is the expenditure function?
(c) What is the direct utility function?

7.5. A consumer has a direct utility function of the form
U((L‘l,.’L‘g) = u(zl) + Zo.

Good 1 is a discrete good; the only possible levels of consumption of good 1
are £; = 0 and z; = 1. For convenience, assume that u(0) = 0 and p; = 1.

(a) What kind of preferences does this consumer have?

(b) The consumer will definitely choose z; = 1 if p, is strictly less than
what?

(c) What is the algebraic form of the indirect utility function associated
with this direct utility function?
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7.6. A consumer has an indirect utility function of the form v(p,m) =

A(p)m.
(a) What kind of preferences does this consumer have?
(b) What is the form of this consumer’s expenditure function, e(p, u)?

{c) What is the form of this consumer’s indirect money metric utility
function, u(p;q,m)?

(d) Suppose instead that the consumer had an indirect utility function
of the form v(p,m) = A(p)m® for b > 1. What will be the form of the
consumer’s indirect money metric utility function now?



CHAPTER 8

CHOICE

In this chapter we will examine the comparative statics of consumer de-
mand behavior: how the consumer’s demand changes as prices and income
change. As in the case of the firm, we will approach this problem in three
different ways: by differentiating the first-order conditions, by using the
properties of the expenditure and indirect utility functions, and by using
the algebraic inequalities implied by the optimizing model.

8.1 Comparative statics

Let us examine the two-good consumer maximization problem in a bit more
detail. It is of interest to look at how the consumer’s demand changes as
we change the parameters of the problem. Let’s hold prices fixed and allow
income to vary; the resulting locus of utility-maximizing bundles is known
as the income expansion path. From the income expansion path, we can
derive a function that relates income to the demand for each commodity
(at constant prices). These functions are called Engel curves. Several
possibilities arise:

(1) The income expansion path (and thus each Engel curve) is a straight
line through the origin. In this case the consumer is said to have demand
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curves with unit income elasticity. Such a consumer will consume the same
proportion of each commodity at each level of income.

(2) The income expansion path bends towards one good or the other—i.e.,
as the consumer gets more income, he consumes more of both goods but
proportionally more of one good (the luxury good) than of the other (the
necessary good).

(3) The income expansion path could bend backwards—in this case an in-
crease in income means the consumer actually wants to consume less of
one of the goods. For example, one might argue that as income increases
I would want to consume fewer potatoes. Such goods are called inferior
goods; goods for which more income means more demand are called nor-
mal goods. (See Figure 8.1.)

GOOD 2 GOOD 2 GOOD 2
GOOD 1 GOOD 1 GOOD 1
A B [
Income expansion paths. Panel A depicts unit elastic de- Figure
mands, in panel B good 2 is a luxury good, and in panel C, 8.1

good 1 is an inferior good.

We can also hold income fixed and allow prices to vary. If we let p;
vary and hold ps and m fixed, our budget line will tilt, and the locus of
tangencies will sweep out a curve known as the price offer curve. In the
first case in Figure 8.2 we have the ordinary case where a lower price for
good 1 leads to greater demand for the good; in the second case we have a
situation where a decrease in the price of good 1 brings about a decreased
demand for good 1. Such a good is called a Giffen good. An example
might again be potatoes; if the price of potatoes goes down I can buy just
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as many of them as I could before and still have some money left over.
I could use this leftover money to buy more pasta. But now that I am
consuming more pasta I don’t even want to consume as many potatoes as
I did before.

GOOD 2 GOOD 2
Offer curve
Offer curve
GOOD 1 GOOD 1
A B =

Figure Offer curves. In panel A the demand for good 1 increases as
8.2 the price decreases so it is an ordinary good. In panel B the

demand for good 1 decreases as its price decreases, so it is a

Giffen good.

In the above example we see that a fall in the price of a good may have two
sorts of effects—one commodity will become less expensive than another,
and total “purchasing power” may change. A fundamental result of the
theory of the consumer, the Slutsky equation, relates these two effects. We
will derive the Slutsky equation later in several ways.

EXAMPLE: Excise and income taxes

Suppose we wish to tax a utility-maximizing consumer to obtain a certain
amount of revenue. Initially, the consumer’s budget constraint is pyxz +
paz2 = m, but after we impose a tax on sales of good 1, the consumer’s
budget constraint becomes (p) + t)z1 + pexz = m. The effect of this
excise tax is illustrated in Figure 8.3. If we denote the after-tax level of
consumption by (z3,z3), then the revenue collected by the tax is tz7.
Suppose now that we decide to collect this same amount of revenue by
a tax on income. The budget constraint of the consumer would then be
pZ1+p2ze = m—te;. This is a line with slope —p; /p2 that passes through
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(z},z3), as shown in Figure 8.3. Notice that since this budget line cuts the
indifference curve through (z7, z3), the consumer can achieve a higher level
of utility from an income tax than from a commodity tax, even though they
both generate the same revenue.

GOOD 2

Consumption
with sales tax —_|

Onginal consumption

Consumption
with income tax

GOOD 1

Excise tax and income tax. A consumer is always worse
off facing an excise tax than an income tax that generates the
same revenue.

8.2 The Slutsky equation

We have seen that the Hicksian, or compensated demand curve, is formally
the same as the conditional factor demand discussed in the theory of the
firm. Hence it has all the same properties; in particular, it has a symmetric,
negative semidefinite substitution matrix.

In the case of the firm, this sort of restriction was an observable restric-
tion on firm behavior, since the output of the firm is an observable variable.
In the case of the consumer, this sort of restriction does not appear to be
of much use since utility is not directly observable.

However, it turns out that this appearance is misleading. Even though
the compensated demand function is not dwrectly observable, we shall see
that its derivative can be easily calculated from observable things, namely,
the derivative of the Marshallian demand with respect to price and income.
This relationship is known as the Slutsky equation.

Figure
8.3
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Slutsky equation.

827]' (pa m) — ahj (p, 'U(p, m)) _ a:I;j (pa m)
Op; Op; om

Proof. Let x* maximize utility at (p*,m*) and let u* = u(x*). It is
identically true that

zi(pa m)

hj(p,v*) = z;(p, e(p, u")).
We can differentiate this with respect to p; and evaluate the derivative at
p* to get
Oh;(p*,u") _ Oz;(p*,m*) + Oz;(p*,m") Oe(p*,u*)
op; Op; om Op;

Note carefully the meaning of this expression. The left-hand side is how
the compensated demand changes when p; changes. The right-hand side
says that this change is equal to the change in demand holding expenditure
fixed at m* plus the change in demand when income changes times how
much income has to change to keep utility constant. But this last term,
Be(p*,u*)/dp;, is just z}; rearranging gives us

dz;(p",m*) _ Oh;(p",u’) _ axj(p*,m*)w,f
Op; opi om )

which is the Slutsky equation. il

The Slutsky equation decomposes the demand change induced by a price
change Ap; into two separate effects: the substitution effect and the
income effect:

z; Ap;

Azjx =g Ay = —5 == 0p = — o

We can also consider the effects from all prices changing at once; in
this case we just interpret the derivatives as generalized n—dimensional
derivatives rather than partial derivatives. In the two-good case the Slutsky
equation looks like this:

Dpx(pa m) = Dph(p’ u) - DmX(p, m)x

a:If‘l (P, m) 61‘1 (p7 m) ahl (pa U) ahl (pv U)
op: Op2 _ om Op2
Oza(p,m) Ozz(p,m) Ohy(p,u) Oha(p,u)
Op1 Op2 Op: Op2
axlgp7 m)
| Bz gtm |21, z2]

m
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where u = v(p, m).
Expanding the last term gives

Oz (p,m) dzi(pm) Oz igp, ™) 2,
m ™m
dzo(p,m) [e1,22] Ozy(p,m) — Oza(p,m)
om om 1 om 2

Suppose we consider a price change Ap = (Ap;, Ap2) and we are inter-
ested in the approximate change in demand Ax = (Az;, Azp). According
to the Slutsky equation, we can calculate this change using the expression

&

Oh; Oh o o
[Am] ggf ?ﬁé {Am]_[g%wl afnﬂ [Am]
Az A x 2 A
2 Bﬁl 552 P2 E_n%xl 22 D2 _
_ Az} _ Az
- Azs AzD

The first vector is the substitution effect. It indicates how the Hicksian
demands change. Since changes in Hicksian demands keep utility constant,
(Ax$, Azx§) will be tangent to the indifference curve. The second vector
is the income effect. The price change has caused “purchasing power”
to change by z1Ap; + z2Ap; and the vector (Az*, Azj*) measures the
impact of this change on demand, with prices held constant at the initial
level. This vector therefore lies along the income expansion path.

We can do a similar decomposition for finite changes in demand as il-
lustrated in Figure 8.4. Here prices change from p° to p’, and demand
changes from x to x’. To construct the Hicks decomposition, we first pivot
the budget line around the indifference curve to find the optimal bundle at
prices p’ with utility fixed at the original level. Then we shift the budget
line out to the x’ to find the income effect. The total effect is the sum of
these two movements.

EXAMPLE: The Cobb-Douglas Slutsky equation

Let us check the Slutsky equation in the Cobb-Douglas case. As we’ve
seen, in this case we have

—a,.a—1

v(p1, p2,m) = mpy “pj

e(pl,P%u) = up?pé—'a
am
$1(p1,P2,m) =
y 41

a—1_1-—a

hi(p1,p2,u) = apl™ "p; “u.
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Figure The Hicks decomposition of a demand change. We can
8.4 decompose the change in demand into two movements: the sub-
stitution effect and the income effect.

Thus
dzi(p,m) _ am
Op, P%
dzi(p,m) a
om - P
Ohi(p, u) —2 1-
—— =gafa - 1)p7 Gy
apl ( )pl Py
PP _ o1ttt

= a(a — 1)p7*m.

Now plug into the Slutsky equation to find

6h, 0n ala—1)m aam
—_— = I = ____2__ —_——
dpy  Om Pi D1 pr
_la(a—1) —a®lm
%
_—am _0n
P% Op1 '

8.3 Properties of demand functions

The properties of the expenditure function give us an easy way to develop
the main propositions of the neoclassical theory of consumer behavior:
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(1) The matriz of substitution terms (Oh;(p,u)/0p;) is negative semidefin-
ite. This follows because

(Oh;(p,u)/8p:) = (8%e(p, u)/Opidp;),
which is negative semidefinite because the expenditure function is concave.

(See Chapter 27, page 496.)

(2) The matriz of substitution terms is symmetric—since

Ohj(p,u) _ 0%(p,u) _ O%(p,u) _ Ohi(p,u)

Op; Op;Op; Op;Op; Op;

(3) In particular, “the compensated own-price effect is nonpositive”; that
is, the Hicksian demand curves slope downward:

ahi(pa u) _ aze(pvu) <0

Ip; op: T 7
since the substitution matrix is negative semidefinite and thus has non-
positive diagonal terms.

e

These restrictions all concern the Hicksian demand functions, which are
not directly observable. However, as we indicated earlier the Slutsky equa-
tion allows us to express the derivatives of h with respect to p as derivatives
of x with respect to p and m, and these are observable. For example, Slut-
sky’s equation and the above remarks yield

4) The substitution matriz 0z;(p,m) + 9z;(p,m) x; | is a symmetric,
Op; om

negative semidefinite matriz.

This is a rather nonintuitive result: a particular combination of price and
income derivatives has to result in a negative semidefinite matrix. However,
it follows inexorably from the logic of maximizing behavior.

8.4 Comparative statics using the first-order conditions

The Slutsky equation can also be derived by differentiating the first-order

conditions. Since the calculations are a bit tedious, we will limit ourselves

to the case of two goods and just sketch the broad outlines of the argument.
In this case the first-order conditions take the form

p121(p1, p2, m) + p2x2(pr,p2,m) —m =0

Ou(z1(p1, p2, m), T2(p1, P2, m))
8:1:1

au(zl(plyp%m)7$2(plap2am))
6.’1)2

—/\p150

—Apz =0.
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Differentiating with respect to p;, and arranging in matrix form, we have

o)
0 -; —po gg Ty
—P1 Uil U2 3:511 =(A
0

—Pp2 U1 U2 oz
1

Solving for 8z,/8p1 via Cramer’s rule gives us

0 Ty —P2

-1 A up
Ory _ |-p2 0 up
8p1 - H ’

where H > 0 is the determinant of the bordered Hessian.
Expanding this determinant by cofactors on the second column, we have

' 0 -p
-p2 u
Ozy _ (| 7Pz Uz o

ap H

—P1 Uiz
—D2 U2
H

This is beginning to look a bit like Slutsky’s equation already. Note that
the first term—which turns out to be the substitution effect—is negative as
required. Now go back to the first-order conditions and differentiate them
with respect to m. We have

A
0 -pr —p2 g’fﬁ -1
—p1 U1l U12 B—f_nl = 0 ~
0

—p2  Upl  U22 oz
om

So, by Cramer’s rule,

—P1 Uiz
Oz, —p2  Upo

om H

Substituting into the equation for dz;/0p; derived above, we have the
income-effect part of Slutsky’s equation. In order to derive the substitu-
tion effect, we need to set up the expenditure minimization problem and
calculate Oh1/0p;. This calculation is analogous to the calculation of the
conditional factor demand functions in Chapter 4, page 59. The resulting
expression can be shown to be equal to the substitution term in the above
equation, which establishes Slutsky’s equation.



THE INTEGRABILITY PROBLEM 125

8.5 The integrability problem

We have seen that the utility maximization hypothesis imposes certain
observable restrictions on consumer behavior. In particular, we know that
the matrix of substitution terms,

() (g )

must be a symmetric, negative semidefinite matrix.

Suppose that we were given a system of demand functions which had a
symmetric, negative semidefinite substitution matrix. Is there necessarily
a utility function from which these demand functions can be derived? This
question is known as the integrability problem.

As we have seen, there are several equivalent ways to describe consumer
preferences. We can use a utility function, an indirect utility function,
an expenditure function, and so on. The indirect utility function and the
expenditure function are quite convenient ways to solve the integrability
problem.

For example, Roy’s law tells us that

dv(p,m)/0p;

z.(p,m) = ~ Bu(p.m)/om’ (8.1)

Generally, we have been given an indirect utility function and then used
this identity to calculate the demand functions. However, the integrability
problem asks the reverse question: given the demand functions, and the
i = 1,...,k relationships in (8.1), how can we solve these equations to
find v(p,m)? Or, more fundamentally, how do we even know if a solution
exists?

The system of equations given in (8.1) is a system of partial differential
equations. The integrability problem asks us to determine a solution of
this set of equations.

As it turns out, it is somewhat easier to pose this question in terms of
the expenditure function rather than the indirect utility function. Suppose
that we are given some set of demand functions (z;(p,m)) fori =1,...,k.
Let us pick some point x° = x(p® m) and arbitrarily assign it utility u°.
How can we construct the expenditure function e(p,u®)? Once we have
found an expenditure function consistent with the demand functions, we
can use it to solve for the implied direct or indirect utility function.

If such an expenditure function does exist, it certainly must satisfy the
system of partial differential equations given by

0
éa-(appy‘—,u) = hi(pauo) zmi(p)e(pvuo)) i= 13"'>ka (82)



126 CHOICE (Ch. 8)

and initial condition
e(p®,4°) = p’x(p°, m?).

These equations simply state that the Hicksian demand for each good at
utility u is the Marshallian demand at income e(p,u). Now the integra-
bility condition described in Chapter 26, page 484, says that a system of
partial differential equations of the form

9f(p) .
hE AL, =1,---,k
has a (local) solution if and only if

9g:(p) _ 99i(p)
Op; op;

all 7 and j.

Applying this condition to the above problem, we see that it reduces to
requiring that the matrix

(8mz-(p, m) , 92i(p,m) Be(p, U)>
Bpj om 6pj

is symmetric. But this is just the Slutsky restriction! Thus the Slutsky
restrictions imply that the demand functions can be “integrated” to find
an expenditure function consistent with the observed choice behavior.

This symmetry condition is enough to ensure that there will exist a
function e(p,u®) that will satisfy the equations (8.2) at least over some
range. (Conditions that ensure a solution exists globally are somewhat
more involved.) However, in order for this to be a bona fide expenditure
function it must also be concave in prices. That is, the second derivative
matrix of e(p,u) must be negative semidefinite. But, we have already
seen that the second derivative matrix of e(p,u) is simply the Slutsky
substitution matrix. If this is negative semidefinite, then the solution to
the above partial differential equations must be concave.

These observations give us a solution to the integrability problem. Given
a set of demand functions (z;(p,m)), we simply have to verify that they
have a symmetric, negative semidefinite substitution matrix. If they do,
we can, in principle, solve the system of equations given in (8.2) to find an
expenditure function consistent with those demand functions.

There is a nice trick that will allow us to recover the indirect utility
function from demand functions, at the same time that we recover the
expenditure function. Equation (8.2) is valid for all utility levels u°, so let
us choose some base prices q and income level m, and let u° = v(q,m).
With this substitution, we can write (8.2) as

de(p, v(q,m))

op; = z;(p, e(p,v(g,m))),
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where the boundary condition now becomes
e(q,v(q,m)) = m.
Recall the definition of the (indirect) money metric utility function in

Chapter 7, page 109: p(p;q,m) = e(p,v{q,m)). Using this definition, we
can also write this system of equations as follows:

Oulpia,m) =zi(p,u(p;a,m)) i=1,--,k
Op;
p(q; q,m) = m.

We refer to this system as the integrability equations. A function
1(p; 9, m) that solves this problem gives us an indirect utility function—a
particular indirect utility function—that describes the observed demand
behavior x{p,m). This money metric utility function is often very conve-
nient for applied welfare analysis.

EXAMPLE: Integrability with two goods

If there are only two goods being consumed, the integrability equations
take a very simple form since there is only one independent variable, the
relative price of the two goods. Similarly, there is only one independent
equation since if we know the demand for one good, we can find the demand
for the other through the budget constraint.

Let us normalize the price of good 2 to be 1, and write p for the price of
the first good and z(p, m) for its demand function. Then the integrability
equations become a single equation plus a boundary condition:

du(p;q,m) ,
e z(p, u(p; g, m))
u{g;g,m) =m

This is just an ordinary differential equation with boundary condition which
can be solved using standard techniques.
For example, suppose that we have a log-linear demand function:

Inz=alnp+blnm+c

T = pa mb e€
The integrability equation is

du(p; g,
/L(pdq m) =pa€cub.
D
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Rearranging, we have

_pdu(m; g, m)
[ Dl sl A1 ST N ) c
7 o pe

Integrating this expression,

q q
/p_b%dtzec/ todt
14 ot P

#l—b q B qa+1 _pa+1 o
1-b a+1

p

for b # 1. Solving this equation yields

m' ™ — p(pygm)' ™0 _ gttt - ptt
1-b a+1 ’
or,
1
X _ 1—-b (b_]') cf o+l _ ,a+l 1

EXAMPLE: Integrability with several goods

We now consider a case where there are three goods and thus two inde-
pendent demand equations. For definiteness consider the Cobb-Douglas
system:

aim
Ty = —
Y41
asm
Xg = ——
D2

We verified earlier that this system satisfies Slutsky symmetry so that
we know that the integrability equations will have a solution. We simply
have to solve the following system of partial differential equations:

o _
Op1 B Y41
Op _ aa
Opa D2

w1, g2;q1,92,m) =m
The first equation implies that

Ing=a;lnp; +C
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for some constant of integration Cj, and the second equation implies that
Inpg = azlnps + Cs.

So it is natural to look for a solution of the form
Inp = a;lnp; + azlnp; + Cs,

where Cj5 is independent of p; and p,.
Substituting into the boundary condition, we have

Inp(q;q,m) =Inm =a;lnq; +az2lnge + Cs.

Solving this equation for C3 and substituting into the proposed solution,
we have

Inpu(p;q,m) =a1lnp; +azlnp, —ajlng; —azlngs +1lnm.

which is indeed the money metric indirect utility function for the Cobb-
Douglas utility function. See Chapter 7, page 111, for another derivation
of this function.

8.6 Duality in consumption

We have seen how one can recover an indirect utility function from observed
demand functions by solving the integrability equations. Here we see how
to solve for the direct utility function.

The answer exhibits quite nicely the duality between direct and indirect
utility functions. It is most convenient to describe the calculations in terms
of the normalized indirect utility function, where we have prices divided by
income so that expenditure is identically one. Thus the normalized indirect
utility function is given by

v(p) = max u(x)
such that px = 1.

It turns out that if we are given the indirect utility function v(p), we can
find the direct utility function by solving the following problem:

u(x) = min v(p)

such that px =1

The proof is not difficult, once you see what is going on. Let x be the
demanded bundle at the prices p. Then by definition v(p) = u(x). Let
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Optimal bundle at
prices p1s x

Optimal bundie at
different budget at
which x 1s affordable

GOOD 1

Solving for the direct utility function. The utility associ-
ated with the bundle x must be no larger than the utility that
can be achieved at any prices p at which x is affordable.

p’ be any other price vector that satisfies the budget constraint so that
p’'x = 1. Then since x is always a feasible choice at the prices p’, due to
the form of the budget set, the utility-maximizing choice must yield utility
at least as great as the utility yielded by x; that is, v(p’) > u(x) = v(p).
Hence, the minimum of the indirect utility function over all p’s that satisfy
the budget constraint gives us the utility of x.

The argument is depicted in Figure 8.5. Any price vector p that satisfies
the budget constraint px = 1 must yield a higher utility than u(x), which
is simply to say that u(x) solves the minimization problem posed above.

EXAMPLE: Solving for the direct utility function

Suppose that we have an indirect utility function given by v(p1,p2) =
~alnp; —blnpy. What is its associated direct utility function? We set up
the minimization problem:

min —alnp; — blnp;
P1,p2

such that pix, + poze = 1.

The first-order conditions are

—a/p1 = Axy

—~b/p2 = Az2,
or,

~a = Ap1Z1

b= )\p2$2.
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Adding together and using the budget constraint yields
A=—-a-b

Substitute back into the first-order conditions to find

a
=)
b
Pz = (a+b)zy’

These are the choices of (p1,p2) that minimize indirect utility. Now
substitute these choices into the indirect utility function:

a
u(zy,z2) = —aln @t ba bln @7 bm

= alnz; + blnxy + constant.

This is the familiar Cobb-Douglas utility function.

8.7 Revealed preference

In our study of consumer behavior we have taken preferences as the prim-
itive concept and derived the restrictions that the utility maximization
model imposes on the observed demand functions. These restrictions are
basically the Slutsky restrictions that the matrix of substitution terms be
symmetric and negative semidefinite.

These restrictions are in principle observable, but in practice they leave
something to be desired. After all, who has really seen a demand function?
The best that we may hope for in practice is a list of the choices made un-
der different circumstances. For example, we may have some observations
on consumer behavior that take the form of a list of prices, p’, and the
associated chosen consumption bundles, x! for ¢ = 1,...,7. How can we
tell whether these data could have been generated by a utility-maximizing
consumer?

We will say that a utility function rationalizes the observed behavior
(pt,xt) for t = 1,---,T if u(xt) > u(x) for all x such that p’x* > p’x.
That is, u(x) rationalizes the observed behavior if it achieves its maximum
value on the budget set at the chosen bundles. Suppose that the data were
generated by such a maximization process. What observable restrictions
must the observed choices satisfy?

Without any assumptions about u(x) there is a trivial answer to this
question, namely, no restrictions. For suppose that u(x) were a constant
function, so that the consumer was indifferent to all observed consumption
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bundles. Then there would be no restrictions imposed on the patterns of
observed choices: anything is possible.

To make the problem interesting, we have to rule out this trivial case.
The easiest way to do this is to require the underlying utility function to be
locally nonsatiated. Our question now becomes: what are the observable
restrictions imposed by the maximization of a locally nonsatiated utility
function?

First, we note that if p'x* > p’x, then it must be the case that u(x!) >
u(x). Since x* was chosen when x could have been chosen, the utility of x*
must be at least as large as the utility of x. In this case we will say that x* is
directly revealed preferred to x, and write x! RPx. As a consequence of
this definition and the assumption that the data were generated by utility
maximization, we can conclude that “x! RPx implies u(x*) > u(x).”

Suppose that pixt > pix. Does it follow that u(x’) > u(x)? It is not
hard to show that local nonsatiation implies this conclusion. For we know
from the previous paragraph that u(x') > u(x); if u(x*) = u(x), then by
local nonsatiation there would exist some other x’ close enough to x so that
p'xt > p'x’ and u(x’) > u(x) = u(x'). This contradicts the hypothesis of
utility maximization.

If pixt > p’x, we will say that x! is strictly directly revealed pre-
ferred to x and write x! PPx.

Now suppose that we have a sequence of such revealed preference com-
parisons such that x!RPx7, x7RPx*,... x"RPx. In this case we will say
that x! is revealed preferred to x and write x!Rx. The relation R is
sometimes called the transitive closure of the relation RP. If we assume
that the data were generated by utility maximization, it follows that “x*Rx
implies u(x*) > u(x).”

Consider two observations x* and x*. We now have a way to determine
whether u(x*) > u(x*) and an observable condition to determine whether
u(x®) > u(x?). Obviously, these two conditions should not both be satis-
fied. This condition can be stated as the

GENERALIZED AXIOM OF REVEALED PREFERENCE. If
xt is revealed preferred to x°, then x® cannot be strictly directly revealed

preferred to xt.
Using the symbols defined above, we can also write this axiom as

GARP. x! R x® implies not x* PP xt. In other words, x* R x*® implies
p°x® < p°xt.

As the name implies, GARP is a generalization of various other revealed
preference tests. Here are two standard conditions.
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WEAK AXIOM OF REVEALED PREFERENCE (WARP). If
xt RP x* and x? is not equal to x°, then it is not the case that x° RP x!.

STRONG AXIOM OF REVEALED PREFERENCE (SARP). If
xt R x® and x* is not equal to x°, then it is not the case that x°* R x*.

Each of these axioms requires that there be a unique demand bundle at
each budget, while GARP allows for multiple demanded bundles. Thus,
GARP allows for flat spots in the indifference curves that generated the

observed choices.
i

8.8 Sufficient conditions for maximization

If the data (p?,x*) were generated by a utility-maximizing consumer with
nonsatiated preferences, the data must satisfy GARP. Hence, GARP is an
observable consequence of utility maximization. But does it express all the
implications of that model? If some data satisfy this axiom, is it necessarily
true that it must come from utility maximization, or at least be thought
of in that way? Is GARP a sufficient condition for utility maximization?

It turns out that it is. If a finite set of data is consistent with GARP,
then there exists a utility function that rationalizes the observed behavior—
i.e., there exists a utility function that could have generated that behavior.
Hence, GARP exhausts the list of restrictions imposed by the maximization
model.

The following theorem is the nicest way to state this result.

Afriat’s theorem. Let (pi,xt) fort = 1,...,T be a finite number of
observations of price vectors and consumption bundles. Then the following
conditions are equivalent.

(1) There exists a locally nonsatiated utility function that rationalizes the
data;

(2) The data satisfy GARP;

(3) There emst positwe numbers (ut,A\t) for t = 1,...,T that satisfy the
Afriat inequalities:

u® <ul 4+ Np(x® —x') forallt,s;

(4) There exists a locally nonsatiated, continuous, concave, monotonic util-
ity function that rationalizes the data.
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Proof. We have already seen that (1) implies (2). The proof that (2)
implies (3) is omitted; see Varian (1982a) for the argument. The proof
that (4) implies (1) is trivial. All that is left is the proof that (3) implies
4).

We establish this implicaﬁon constructively by exhibiting a utility func-
tion that does the trick. Define

u(x) = mtin{ut + Aipt(x — x)}.

Note that this function is continuous. As long as pt > 0 and no p! = 0, the
function will be locally nonsatiated and monotonic. It is also not difficult
to show that it is concave. Geometrically, this function is just the lower
envelope of a finite number of hyperplanes.

We need to show that this function rationalizes the data; that is, when
prices are pt, this utility function achieves its constrained maximum at x*.
First we show that u(x*) = u®. 1f this were not the case, we would have

* u(x?) = u™ + A"p™(x! — x™) < ut.

But this violates one of the Afriat inequalities. Hence, u(x?) = u®.
Now suppose that p°x® > p*x. It follows that

u(x) = mtin{ut + Api(x — x*)} < u® + X°p°(x — x°) < u® = u(x®).

This shows that u(x®) > u(x) for all x such that p°x < p®x®. In other
words, u(x) rationalizes the observed choices.

The utility function defined in the proof of Afriat’s theorem has a nat-
ural interpretation. Suppose that u(x) is a concave, differentiable utility
function that rationalizes the observed choices. The fact that u(x) is dif-
ferentiable implies it must satisfy the T first-order conditions

Du(x') = A'pt. (8.3)

The fact that u(x) is concave implies that it must satisfy the concavity

conditions
u(xt) < u(x®) + Du(x?)(x! - x*). (8.4)

Substituting from (8.3) into (8.4), we have
u(xt) < u(x®) + A°p*(x* — x*).

Hence, the Afriat numbers ! and A* can be interpreted as utility levels
and marginal utilities that are consistent with the observed choices.

The most remarkable implication of Afriat’s theorem is that (1) implies
(4): if there is any locally nonsatiated utility function at all that rationalizes
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the data, there must exist a continuous, monotonic, and concave utility
function that rationalizes the data. This is similar to the observation made
in Chapter 6, page 83, where we showed that if there were nonconvex
parts of the input requirement set, no cost minimizer would ever choose to
operate there.

The same is true for utility maximization. If the underlying utility func-
tion had the “wrong” curvature at some points, we would never observe
choices being made at such points because they wouldn’t satisfy the right
second-order conditions. Hence market data do not allow us to reject the
hypotheses of convexity and monotonicity of preferences.

8.9 Comparative statics using revealed preference

Since GARP is a necessary and sufficient condition for utility maximization,
it must imply conditions analogous to comparative statics results derived
earlier. These include the Slutsky decomposition of a price change into the
income and the substitution effects and the fact that the own substitution
effect is negative.

Let us begin with the latter result. When we consider finite changes
in a price rather than just infinitesimal changes, there are two possible
definitions of the compensated demand. The first definition is the natural
extension of our earlier definition—namely, the demand for the good in
question if we change the level of income so as to restore the original level
of utility. That is, the value of the compensated demand for good i when
prices change from p to p + Ap is just z,(p + Ap,m + Am) = z,(p +
Ap,e(p+Ap,u)), where u is the original level of utility achieved at (p, m).
This notion of compensation is known as the Hicksian compensation.

The second notion of compensated demand when prices change from p
to p + Ap is known as the Slutsky compensation. It is the level of
demand that arises when income is changed so as to make the original
level of consumption possible. This is easily described by the following
equations. We want the change in income, Am, necessary to allow for the
old level of consumption, x(p,m), to be feasible at the new prices, p+ Ap.
That is

(p+ Ap)x(p,m) =m+ Am.

Since p x(p,m) = m, this reduces to Ap x(p,m) = Am.

The difference between the two notions of compensation is illustrated in
Figure 8.6. The Slutsky notion is directly measurable without knowledge of
the preferences, but Hicksian notion is more convenient for analytic work.

For infinitesimal changes in price there is no need to distinguish between
the two concepts since they coincide. We can prove this simply by exam-
ining the expenditure function. If the price of good j changes by dp,, we
need to change expenditure by (de(p,u)/0p,)dp, to keep utility constant.
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If we want to keep the old level of consumption feasible, we need to change
income by z;dp;. By the derivative property of the expenditure function,
these two magnitudes are the same.

GOOD 2

Slutsky 1

compensation

Hicks
compensation

GOOD 1

Hicks and Slutsky compensation. Hicks compensation is
an amount of money that makes the original level of utility
affordable. Slutsky compensation is an amount of money that
makes the original consumption bundle achievable.

Whichever definition you prefer, we can still use revealed preference to
prove that “the compensated own-price effect is negative.” Suppose we
consider the Hicksian definition. We start with a price vector p and let
x = x(p, m) be the demanded bundle. The price vector changes to p+ Ap,
and the compensated demand, therefore, changes to x(p + Ap,m + Am),
where Am is the amount necessary to make x(p+ Ap, m+Am) indifferent
to x(p, m).

Since x(p,m) and x(p + Ap,m + Am) are indifferent to each other,
neither can be strictly directly revealed preferred to the other. That is, we
must have

p x(p,m) <px(p+ Ap,m+ Am)
(p+ Ap)x(p+ Ap,m + Am) < (p + Ap)x(p,m).

Adding these inequalities together, we have
Ap[x(p + Ap,m + Am) — x(p,m)] < 0.
Letting Ax = x(p + Ap,m + Am) — x(p, m), this becomes
Ap Ax < 0.
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Suppose that only one price has changed so that Ap = (0,---, Ap;,---,0).
Then this inequality implies that x; must change in the opposite direction.

We now turn to the Slutsky definition. We keep the same notation as
before, but now interpret Am as the change in income necessary to make
the old consumption bundle affordable. Since x(p,m) is thus by hypothesis
a feasible level of consumption at p + Ap, the bundle actually chosen at
p + Ap cannot be revealed worse than x(p, m). That is,

P x(p,m) < p x(p+ Ap,m + Am).

Since (p + Ap)x(p + Ap,m + Am) = (p + Ap)x(p,m) by construction
of Am, we can subtract this equality from the above inequality to find

Ap Ax <0,

just as before.

8.10 The discrete version of the Slutsky equation

We turn now to the task of deriving the Slutsky equation. We derived this
equation earlier by differentiating an identity involving Hicksian and Mar-
shallian demands. We start by writing the following arithmetic identity:

z(p + Ap,m) — z;(p,m) = z;(p + Ap,m + Am) — z;(p,m)
— [zi(p + Ap,m 4+ Am) — z;(p + Ap,m)].

Note that this is true by the ordinary rule of algebra.

Suppose that Ap = (0,---,Apj,---,0). Then the compensating change
in income—in the Slutsky sense—is Am = z;(p, m)Ap;. If we divide each
side of the above identity by Ap, and use the fact that Ap; = Am/z;(p,m),
we have

z;(p + Ap,m) — z;(p,m) _ z;(p + Ap,m + Am) — z;(p,m)
Apj - Apj
[zi(p + Ap,m + Am) — z;(p + Ap, m)]
Am '
Interpreting each of the terms in this expression, we can write
Az; Az Az,
Ap; - Ap; lcomp " Am

Note that this last equation is simply a discrete analog of the Slutsky equa-
tion. The term on the left-hand side is how the demand for good i changes
as price j changes. This is decomposed into the substitution effect—how
the demand for good ¢ changes when price j changes and income is also
changed so as to keep the original level of consumption possible—and the
income effect-—how the demand for good i changes when prices are held
constant but income changes times the demand for good j. The Slutsky
decomposition of a price change is illustrated in Figure 8.7.

= Iy (p7 m)
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Slutsky decomposition of a price change. First pivot the
budget line around the original consumption bundle and then
shift it out to the final choice.

8.11 Recoverability

<

Since the revealed preference conditions are a complete set of the restric-
tions imposed by utility-maximizing behavior, they must contain all of the
information available about the underlying preferences. It is more-or-less
obvious how to use the revealed preference relations to determine the pref-
erences among the observed choices, x*, fort = 1,...,T. However, it is less
obvious to use the revealed preference relations to tell you about preference
relations between choices that have never been observed.

This is easiest to see using an example. Figure 8.8 depicts a a single
observation of choice behavior, (p!,x!). What does this choice imply about
the indifference curve through a bundle x°? Note that x° has not been
previously observed; in particular, we have no data about the prices at
which x° would be an optimal choice.

Let’s try to use revealed preference to “bound” the indifference curve
through x°. First, we observe that x! is revealed preferred to x°. Assume
that preferences are convex and monotonic. Then all the bundles on the
line segment connecting x° and x! must be at least as good as 2%, and all
the bundles that lie to the northeast of this bundle are at least as good
as x°. Call this set of bundles RP(z°), for “revealed preferred” to x°. It
is not difficult to show that this is the best “inner bound” to the upper
contour set through the point x°.

To derive the best outer bound, we must consider all possible budget lines
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GOOD 2
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Inner and outer bounds. RP is the inner bound to the
indifference curve through x°; the complement of RW is the
outer bound.

passing through x°. Let RW be the set of all bundles that are revealed
worse than x° for all these budget lines. The bundles in RW are certain
to be worse than x° no matter what budget line is used.

The outer bound to the upper contour set at x° is then defined to be
the complement of this set: NRW = all bundles not in RW. This is the
best outer bound in the sense that any bundle not in this set cannot ever
be revealed preferred to x° by a consistent utility-maximizing consumer.
Why? Because by construction, a bundle that is not in NRW (x°) must be
in RW (x°) in which case it would be revealed worse than x°.

In the case of a single observed choice, the bounds are not very tight. But
with many choices, the bounds can become quite close together, effectively
trapping the true indifference curve between them. See Figure 8.9 for an
illustrative example. It is worth tracing through the construction of these
bounds to make sure that you understand where they come from. Once we
have constructed the inner and outer bounds for the upper contour sets,
we have recovered essentially all the information about preferences that is
contained in the observed demand behavior. Hence, the construction of
RP and RW is analogous to solving the integrability equations.

Our construction of RP and RW up until this point has been graphical.
However, it is possible to generalize this analysis to multiple goods. It turns
out that determining whether one bundle is revealed preferred or revealed
worse than another involves checking to see whether a solution exists to a
particular set of linear inequalities.

Notes

The dual proof of the Slutsky equation given here follows McKenzie (1957)
and Cook (1972). A detailed treatment of integrability may be found

Figure
8.8
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GOOD 2

GOOD 1

Inner and outer bounds. When there are several observa-
tions, the inner and outer bounds can be quite tight.

in Hurwicz & Uzawa (1971). The idea of revealed preferences is due to
Samuelson (1948). The approach taken here follows that of Afriat (1967)
and Varian (1982a). The derivation of the Slutsky equation using revealed
preference follows Yokoyama (1968).

Exercises

8.1. Frank Fisher’s expenditure function is e(p,u). His demand function
for jokes is z,(p,m), where p is vector of prices and m >> 0 is his income.
Show that jokes are a normal good for Frank if and only if §%e/0p,0u > 0.

8.2. Calculate the substitution matrix for the Cobb-Douglas demand system
with two goods. Verify that the diagonal terms are negative and the cross-
price effects are symmetric.

8.3. Suppose that a consumer has a linear demand function z = ap+bm—+c.
Write down the differential equation you would need to solve to find the
money metric utility function. If you can, solve this differential equation.

8.4. Suppose that a consumer has a semi-log demand function Inz = ap +
bm + c¢. Write down the differential equation you would need to solve to
find the money metric utility function. If you can, solve this differential
equation.



Exercises 141

8.5. Find the demanded bundle for a consumer whose utility function is

3
u(x1,x2) = z{ z2 and her budget constraint is 3z, + 4z, = 100.

11
8.6. Use the utility function u(z;,z2) = x% z3 and the budget constraint
m = p1T1 + P22 to calculate x(p, m), v(p,m),h(p,u) and e(p, u).

8.7. Extend the previous exercise to the case where u(z),z2) = (z; —
a1)? (23 — a3)?* and check the symmetry of the matrix of substitution

8.8. Repeat the previous exercise using u*(z1,x2) = %ln T+ %ln T and
show that all the previous formulae hold provided wu is replaced by e* .

8.9. Preferences are represented by u = ¢(x) and a expenditure function, in-
direct utility function and demands are calculated. If the same preferences
are now represented by u* = ¥(#(x)) for a monotone increasing function
%(-), show that e(p, u) is replaced by e(p, v~ (u*)), v(p,m) by (v(p, m)),
and h(p,u) by h(p,¥~1(u*)). Also, check that the Marshallian demands
x(p, m) are unaffected.

8.10. Consider a two-period model with Dave’s utility given by u(z1,z2)
where z; represents his consumption during the first period and x5 is his
second period’s consumption. Dave is endowed with (Z1,ZT2) which he could
consume in each period, but he could also trade present consumption for
future consumption and vice versa. Thus, his budget constraint is

P1T1 + p2x2 = p1T) + paire,
where p; and p, are the first and second period prices respectively.

{a) Derive the Slutsky equation in this model. (Note that now Dave’s
income depends on the value of his endowment which, in turn, depends on
prices: m = p1T1 + p2T2.)

(b) Assume that Dave’s optimal choice is such that z; < Z;. If p; goes
down, will Dave be better off or worse off? What if py goes down?

(c) What is the rate of return on the consumption good?

8.11. Consider a consumer who is demanding goods 1 and 2. When the
price of the goods are (2,4), he demands (1,2). When the prices are (6, 3),
he demands (2,1). Nothing else of significance changed. Is this consumer
maximizing utility?
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8.12. Suppose that the indirect utility function takes the form v(p,y) =
f(p)y. What is the form of the expenditure function? What is the form of
the indirect compensation function, u(p; ¢,y) in terms of the function f(-)
and y?

8.13. The utility function is u(z1,z2) = min{zs + 221,21 + 222 }.

(a) Draw the indifference curve for u(x;, r2) = 20. Shade the area where
w(zy,z2) > 20.

(b) For what values of p; /ps will the unique optimum be z; = 07
(c) For what values of p; /ps will the unique optimum z3 = 07

(d) If neither z; nor zs is equal to zero, and the optimum is unique,
what must be the value of z;/z57

8.14. Under current tax law some individuals can save up to $2,000 a year
in an Individual Retirement Account (I.R.A.), a savings vehicle that has
an especially favorable tax treatment. Consider an individual at a specific
point in time who has income Y, which he or she wants to spend on con-
sumption, C, L.R.A. savings, S}, or ordinary savings Ss. Suppose that the
“reduced form” utility function is taken to be:

U(C, $,,8,;) = S¢seer.

(This is a reduced form since the parameters are not truly exogenous taste
parameters, but also include the tax treatment of the assets, etc.) The
budget constraint of the consumer is given by:

C+ 5 +85 =Y,
and the limit that he or she can contribute to the I.R.A. is denoted by L.

(a) Derive the demand functions for S; and S; for a consumer for whom
the limit L is not binding.

(b) Derive the demand function for S; and S, for a consumer for whom
the limit L s binding.

8.15. If leisure is an inferior good, what is the slope of the supply function
of labor?

8.16. A utility-maximizing consumer has strictly convex, strictly monotonic
preferences and consumes two goods, 1 and z2, each of which has a price
of 1. He cannot consume negative amounts of either good. The consumer
has an income of m every year. His current level of consumption is (z3}, z3),
where 27 > 0 and =3 > 0. Suppose that next year he will be given a grant
of g1 < =7 which must be spent entirely on good 1. (If he wishes, he can
refuse to accept the grant.)
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(a) True or False? If good 1 is a normal good, then the effect of the grant
on his consumption must be the same as the effect of an unconstrained lump
sum grant of an equal amount. If this is true, prove it. If this is false, prove
that it is false.

(b) True or False? If good 1 is an inferior good for the above consumer
at all incomes m > 7 + 3, then if he is given a grant of g; which must be
spent on good 1, the effect must be the same as an unconstrained grant of
an equal amount. If this is true, prove it. If this is false, show what he will
do if he is given the grant.

(c) Suppose that the consumer discussed above has homothetic prefer-
ences and is currently consuming z7 = 12 and 23 = 36. Draw a graph
with g; on the horizontal axis and the amount of good 1 on the vertical
axis. Use this graph to show the amount of good 1 that the consumer will
demand if his ordinary income is m = 48 and if he is given a grant of ¢
which must be spent on good 1. At what level of g; will this graph have
a kink? (Think for a minute before you answer this. Give a numerical
answer.)



CHAPTER 9

DEMAND

In this chapter we investigate several topics in demand behavior. Most of
these have to do with special forms of the budget constraint or preferences
that lead to special forms of demand behavior. There are many circum-
stances where such special cases are very convenient for analysis, and it is
useful to understand how they work.

9.1 Endowments in the budget constraint

In our study of consumer behavior we have taken income to be exogenous.

But in more elaborate models of consumer behavior it is necessary to con-

sider how income is generated. The standard way to do this is to think

of the consumer as having some endowment w = (wy,...,wy) of various

goods which can be sold at the current market prices p. This gives the

consumer income m = pw which can be used to purchase other goods.
The utility maximization problem becomes

max u(x)

such that px = pw.
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This can be solved by the standard techniques to find a demand function
x(p, pw). The net demand for good i is z; — w;. The consumer may have
positive or negative net demands depending on whether he wants more or
less of something than is available in his endowment.

In this model prices influence the value of what the consumer has to
sell as well as the value of what the consumer wants to sell. This shows up
most clearly in Slutsky’s equation, which we now derive. First, differentiate
demand with respect to price:

dzi(p, pw) _ Ozi(p, pw) + Ozi(p,pw)
dp; dp;  |pw=constant om 7

The first term in the right-hand side of this expression is the derivative of
demand with respect to price, holding income fixed. The second term is the
derivative of demand with respect to income, times the change in income.
The first term can be expanded using Shutsky’s equation. Collecting terms
we have

dxi(p> pOJ) — ahi(p7 u) axi(p’ p“)) .
dpj - ap] + 8m (wJ x])'

Now the income effect depends on the net demand for good j rather than
the gross demand.

Think about the case of a normal good. When the price of the good goes
up, the substitution effect and the income effect both push towards reduced
consumption. But suppose that this consumer is a net seller of this good.
Then his actual income increases and this additional endowment income
effect may actually lead to an increase in consumption of the good.

Labor supply

Suppose that a consumer chooses two goods, consumption and labor. She
also has some nonlabor income m. Let v(c, £) be the utility of consumption
and labor and write the utility maximization problem as

max v(c, £)

c,t

such that pc = wf + m.

This problem looks a bit different than the problems we have been studying:
labor is probably a “bad” rather than a good, and labor appears on the
right-hand side of the budget constraint.

However, it is not too hard to change it into a problem that has the
standard form that we have been working with. Let L be the maximum
number of hours that the consumer can work and think of L = L — ¢
as being “leisure.” The utility function for consumption and leisure is
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u(c,L — £) = v(c,£). Using this we can rewrite the utility maximization
problem as

max u(c, L~ £)

such that pc + w(L — £) = wL +m.
Or, using the definition L = L — ¢, we write
L
max u(c, L)
such that pc + wL = wL + m.

This is essentially the same form that we have seen before. Here the con-
sumer “sells” her endowment of labor at the price w and then buys some
back as leisure.

Slutsky’s equation allows us to calculate how the demand for leisure
changes as the wage rate changes. We have

dL(p,w,m) _ OL(p,w,u) + OL(p, w, m)

dw ow om [L—L].

Note that the term in brackets is nonnegative by definition, and almost
surely positive in practice.! This means that the derivative of leisure de-
mand is the sum of a negative number and a positive number and is inher-
ently ambiguous in sign. In other words, an increase in the wage rate can
lead to either an increase or a decrease in labor supply.

Essentially an increase in the wage rate tends to increase the supply of
labor since it makes leisure more expensive—you can get more consumption
by working more. But, at the same time, the increase in the wage rate
makes you potentially richer, and this presumably increases your demand
for leisure.

9.2 Homothetic utility functions

A function f: R™ — R is homogeneous of degree 1 if f(tx) = tf(x)
for all t > 0. A function f(x) is homothetic if f(x) = g(h(x)) where
g is a strictly increasing function and h is a function which is homoge-
neous of degree 1. See Chapter 26, page 482, for further discussion of the
mathematical properties of such functions.

Economists often find it useful to assume that utility functions are homo-
geneous or homothetic. In fact, there is little distinction between the two
concepts in utility theory. A homothetic function is simply a monotonic
transformation of a homogeneous function, but utility functions are only

1 Except, possibly, at final exam time.
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defined up to a monotonic transformation. Thus assuming that preferences
can be represented by a homothetic function is equivalent to assuming that
they can be represented by a function that is homogeneous of degree 1. If
a consumer has preferences that can be represented by a homothetic utility
function, economists say that the consumer has homothetic preferences.

We saw in our discussion of production theory that if a production func-
tion was homogeneous of degree 1, then the cost function could be written
as c(w,y) = c¢(w)y. It follows from this observation that if the utility
function is homogeneous of degree 1, then the expenditure function can be
written as e(p, u) = e(p)u.

This in turn implies that the indirect utility function can be written as
v(p,m) = v(p)m. Roy’s identity then implies that the demand functions
take the form z;(p, m) = z;(p)m—i.e., they are linear functions of income.
The fact that the “income effects” take this special form is often useful in
demand analysis, as we will see below.

9.3 Aggregating across goods

In many circumstances it is reasonable to model consumer choice by certain
“partial” maximization problems. For example, we may want to model the
consumer’s choice of “meat” without distinguishing how much is beef, pork,
lamb, etc. In most empirical work, some kind of aggregation of this sort is
necessary.

In order to describe some useful results concerning this kind of separabil-
ity of consumption decisions, we will have to introduce some new notation.
Let us think of partitioning the consumption bundle into two “subbundles”
so that the consumption bundle takes the form (x,z). For example, x could
be the vector of consumptions of different kinds of meat, and z could be
the vector of consumptions of all other goods.

We partition the price vector analogously into (p, q). Here p is the price
vector for the different kinds of meat, and q is the price vector for the other
goods. With this notation the standard utility maximization problem can
be written as

max u(X, z)
= (9.1)
such that px + qz = m.
The problem of interest is under what conditions we can study the demand
problem for the x-goods, say, as a group, without worrying about how
demand is divided among the various components of the x-goods.

One way to formulate this problem mathematically is as follows. We
would like to be able to construct some scalar quantity index, X, and
some scalar price index, P, that are functions of the vector of quantities
and the vector of prices:

Il

f(p)

g(x).

’ 02
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In this expression P is supposed to be some kind of “price index” which
gives the “average price” of the goods, while X is supposed to be a quantity
index that gives the average “amount” of meat consumed. Our hope is that
we can find a way to construct these price and quantity indices so that they
behave like ordinary prices and quantities.

That is, we hope to find a new utility function U(X, z), which depends
only on the quantity index of x-consumption, that will give us the same
answer as if we solved the entire maximization problem in (9.1}). More
formally, consider the problem

max U(X,z) |
such that PX + qz = m.

The demand function for the quantity index X will be some function
X(P,q,m). We want to know when it will be the case that

X(P,q,m) = X(f(p),q,m) = g(x(p,q,m)).

This requires that we get to the same value of X via two different routes:

1) first aggregate prices using P = f(p) and then maximize U(X, z) subject
to the budget constraint PX + qz = m.

2) first maximize u(x,2z) subject to px + qz = m and then aggregate
quantities to get X = g(x).

As it happens there are two situations under which this kind of aggrega-
tion is possible. The first situation, which imposes constraints on the price
movements, is known as Hicksian separability. The second, which im-
poses constraints on the structure of preferences, is known as functional
separability.

Hicksian separability

Suppose that the price vector p is always proportional to some fixed base
price vector p° so that p = tp? for some scalar t. If the x-goods are various
kinds of meat, this condition requires that the relative prices of the various
kinds of meat remain constant—they all increase and decrease in the same
proportion.

Following the general framework described above, let us define the price
and quantity indices for the x-goods by

P=t
X = p’x.
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We define the indirect utility function associated with these indices as
V(P,q,m) = max u(x,2)
X,z
such that Pp’x + qz = m.

It is straightforward to check that this indirect utility function has all the
usual properties: it is quasiconvex, homogeneous in price and income, etc.
In particular, a straightforward application of the envelope theorem shows
that we can recover the demand function for the x-good by Roy’s identity:

oV(P,q,m)/0P

_ovinq,mjjor _ o
aV(P’q,m)/am p x(p7q’m)‘

X(P,q,m) =

This calculation shows that X(P,q,m) is an appropriate quantity index
for the x-goods consumption: we get the same result if we first aggregate
prices and then maximize U(X,z) as we get if we maximize u(x,2z) and
then aggregate quantities.

We can solve for the direct utility function that is dual to V(P, q,m) by
the usual calculation:

U(X,z) = min V(P,q,m)
Pq
such that PX 4+ qz = m.
By construction this direct utility function has the property that
V(P,q,m) = max U(X, z)
X,z
such that PX + qz = m.

Hence, the price and quantity indices constructed this way behave just like
ordinary prices and quantities.

The two-good model

One common application of Hicksian aggregation is when we are study-
ing the demand for a single good. In this case, think of the z-goods as
being a single good, z, and the x-goods as “all other goods.” The actual
maximization problem is then

max u(x, 2)
X,z

such that px 4+ gz = m.

Suppose that the relative prices of the x-goods remains constant, so that
p = Pp®. That is the vector of prices p is some base price vector p° times
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some price index P. Then Hicksian aggregation says that we can write the
demand function for the z-good as

z = z(P,q,m).

Since this demand function is homogeneous of degree zero, with some abuse
of notation, we can also write

z = z(q/P,m/P).

This says that the demand for the z-good depends on the relative price of
the z-good to “all other goods” and income, divided by the price of “all
other goods.” In practice, the price index for all other goods is usually
taken to be some standard consumer price index. The demand for the
z-good becomes a function of only two variables: the price of the z-good
relative to the CPI and income relative to the CPI.

Functional separability

The second case in which we can decompose the consumer’s consumption
decision is known as the case of functional separability. Let us suppose
that the underlying preference ordering has the property that

(x,2) = (x',z) if and only if (x,2') > (x',2')

for all consumption bundles x, x’, z and z’. This condition says that if x is
preferred to x’ for some choices of the other goods, then x is preferred to x’
for all choices of the other goods. Or, even more succinctly, the preferences
over the x-goods are independent of the z-goods.

If this “independence” property is satisfied and the preferences are locally
nonsatiated, then it can be shown that the utility function for x and z can
be written in the form u(x,z) = U(v(x),z), where U(v, z) is an increasing
function of v. That is, the overall utility from x and z can be written as a
function of the subutility of x, v(x), and the level of consumption of the
z-goods.

If the utility function can be written in this form, we will say that the
utility function is weakly separable. What does separability imply about
the structure of the utility maximization problem? As usual, we will write
the demand function for the goods as x(p,q,m) and z(p,q,m). Let m, =
px(p,q,m) be the optimal expenditure on the x-goods.

It turns out that if the overall utility function is weakly separable, the op-
timal choice of the x-goods can be found by solving the following subutility
maximization problem:

max v(x) 9.3)
such that px = m,
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This means that if we know the expenditure on the x-goods, m, =
px(p,q,m), we can solve the subutility maximization problem to deter-
mine the optimal choice of the x-goods. In other words, the demand for
the x-goods is only a function of the prices of the x-goods and the expen-
diture on the x-goods m,;. The prices of the other goods are only relevant
insofar as they determine the expenditure on the x-goods.

The proof of this is straightforward. Assume that x(p,q, m) does not
solve the above problem. Instead, let x’ be another value of x that satisfies
the budget constraint and yields strictly greater subutility. Then the bundle
(x',z) would give higher overall utility than (x(p, q,m), z(p,q,m)), which
contradicts the definition of the demand function.

The demand functions x(p,m;} are sometimes known as conditional
demand functions since they give demand for the x-goods conditional
on the level of expenditure on these goods. Thus, for example, we may
consider the demand for beef as a function of the prices of beef, pork, and
lamb and the total expenditure on meat.

Let e(p, v) be the expenditure function for the subutility maximization
problem given in (9.3). This tells us how much expenditure on the x-goods
is necessary at prices p to achieve the subutility v.

It is not hard to see that we can write the overall maximization problem
of the consumer as

max U(v,z)

such that e(p,v) + qz = m.

This is almost in the form we want: v is a suitable quantity index for the
x-goods, but the price index for the x-goods isn’t quite right. We want P
times X, but we have some nonlinear function of p and X = v.

In order to have a budget constraint that is linear in quantity index,
we need to assume that subutility function has a special structure. For
example, suppose that the subutility function is homothetic. Then we
know from Chapter 5, page 66, that we can write e(p,v) as e(p)v. Hence,
we can choose our quantity index to be X = v(x), our price index to be
P = e(p), and our utility function to be U(X, z). We get the same X if we

solve
max U(X,z)
X,z

such that PX +qz=m
as if we solve
max u(v(x)},z)
X,z
such that px + qz = m,

and then aggregate using X = v(x).

In this formulation we can think of the consumption decision as taking
place in two stages: first the consumer considers how much of the com-
posite commodity (e.g., meat) to consume as a function of a price index
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of meat by solving the overall maximization problem; then the consumer
considers how much beef to consume given the prices of the various sorts
of meat and the total expenditure on meat, which is the solution to the
subutility maximization problem. Such a two-stage budgeting process is
very convenient in applied demand analysis.

9.4 Aggregating across consumers

We have studied the properties of a consumer’s demand function, x(p, m).

Now let us consider some collection of ¢ = 1,...,n consumers, each of
whom has a demand function for some k& commodities, so that consumer
i’s demand function is a vector x;(p,m;) = (z}(p,m;),---,z%(p,m;)) for

i = 1,---,n. Note that we have changed our notation slightly: goods
are now indicated by superscripts while consumers are indicated by sub-
scripts. The aggregate demand function is defined by X(p,mq, -, m,) =
Y1 %i(p,m;). The aggregate demand for good j is denoted by X?(p, m)
where m denotes the vector of incomes (my,- -+, my,).

The aggregate demand function inherits certain properties of the individ-
ual demand functions. For example, if the individual demand functions are
continuous, the aggregate demand function will certainly be continuous.

Continuity of the individual demand functions is a sufficient but not
necessary condition for continuity of the aggregate demand functions. For
example, consider the demand for washing machines. It seems reasonable
to suppose that most consumers want one and only one washing machine.
Hence, the demand function for an individual consumer ¢ would look like
the function depicted in Figure 9.1.

PRICE

1 2 QUANTITY

Demand for a discrete commodity. At any price greater
than r;, consumer 7 demands zero of the good. If the price is
less than or equal to r;, consumer ¢ will demand one unit of the
good.
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The price r; is called the ith consumer’s reservation price. If con-
sumers’ incomes and tastes vary, we would expect to see several different
reservation prices. The aggregate demand for washing machines is given by
X (p) = number of consumers whose reservation price is at least p. If there
are a lot of consumers with dispersed reservation prices, it would make
sense to think of this as a continuous function: if the price goes up by a
small amount, only a few of the consumers—the “marginal” consumers—
will decide to stop buying the good. Even though their demand changes
discontinuously, the aggregate demand will change only by a small amount.

What other properties does the aggregate demand function inherit from
the individual demands? Is there an aggregate version of Slutsky’s equa-
tion or of the Strong Axiom of Revealed Preference? Unfortunately, the
answer to these questions is no. In fact the aggregate demand function
will in general possess no interesting properties other than homogeneity
and continuity. Hence, the theory of the consumer places no restrictions
on aggregate behavior in general.

However, in certain cases it may happen that the aggregate behavior may
look as though it were generated by a single “representative” consumer.
Below, we consider a circumstance where this may happen.

Suppose that all individual consumers’ indirect utility functions take the
Gorman form:

vi(p,m:) = a;(p) + b(p)m;.

Note that the a;(p) term can differ from consumer to consumer, but the
b(p) term is assumed to be identical for all consumers. By Roy’s identity
the demand function for good j of consumer i will then take the form

zl(p,mi) = o (p) + B’ (P)mi. (9.4)

where,

dai(p)
“Op;

Note that the marginal propensity to consume good j, 8:1:{ (p,m;)/0m;,
is independent of the level of income of any consumer and also constant
across consumers since b(p) is constant across consumers. The aggregate
demand for good j will then take the form

da; ob(p
. 3 a_i T_Z )
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This demand function can in fact be generated by a representative con-
sumer. His representative indirect utility function is given by

V(p,M) = Zai(p) +b(p)M = A(p) + B(p)M,

where M =37 | m;.

The proof is simply to apply Roy’s identity to this indirect utility function
and to note that it yields the demand function given in equation (9.4). In
fact it can be shown that the Gorman form is the most general form of
the indirect utility function that will allow for aggregation in the sense
of the representative consumer model. Hence, the Gorman form is not
only sufficient for the representative consumer model to hold, but it is also
necessary.

Although a complete proof of this fact is rather detailed, the following
argument is reasonably convincing. Suppose, for the sake of simplicity, that
there are only two consumers. Then by hypothesis the aggregate demand
for good j can be written as

X?(p,my +mg) = 2 (p,m1) + z4(p, m2).

If we first differentiate with respect to m; and then with respect to ms,
we find the following identities

8X’(p, M) _ 8z](p,m1) _ 8z}(p, ms)
oM Omy — Omg

fH

Hence, the marginal propensity to consume good j must be the same for
all consumers. If we differentiate this expression once more with respect to
my, we find that

82X (p, M) _ 8*xl(p,m1)

OM? om? 0

Thus, consumer 1’s demand for good j—and, therefore, consumer 2's
demand—is affine in income. Hence, the demand functions for good j take
the form «?(p,m;) = of(p) + B7(p)m;. If this is true for all goods, the
indirect utility function for each consumer must have the Gorman form.

One special case of a utility function having the Gorman form is a util-
ity function that is homothetic. In this case the indirect utility function
has the form v(p, m) = v(p)m, which is clearly of the Gorman form. An-
other special case is that of a quasilinear utility function. In this case
v(p,m) = v(p) + m, which obviously has the Gorman form. Many of the
properties possessed by homothetic and/or quasilinear utility functions are
also possessed by the Gorman form.
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9.5 Inverse demand functions

In many applications it is of interest to express demand behavior by de-
scribing prices as a function of quantities. That is, given some vector of
goods x, we would like to find a vector of prices p and an income m at
which x would be the demanded bundle.

Since demand functions are homogeneous of degree zero, we can fix in-
come at some given level, and simply determine prices relative to this in-
come level. The most convenient choice is to fix m = 1.

In this case the first-order conditions for the utility maximization prob-
lem are simply

3"(")—,\ ;=0 fori=1,....k
ox;

k

Zpi$i=1-

g2z

We want to eliminate A from this set of equations.
To do so, multiply each of the first set of equalities by z; and sum them
over the number of goods to get

Bu(x) = /\Zpﬂ?z 1

=1

Substitute the value of X back into the first expression to find p as function

of x:
Ou(x)
N © .7 S
pilx) = = u(x)
i=1"x;

Given any vector of demands x, we can use this expression to find the
price vector p(x) which will satisfy the necessary conditions for maximiza-
tion. If the utility function is quasiconcave so that these necessary con-
ditions are indeed sufficient for maximization, then this will give us the
inverse demand relationship.

What happens if the utility function is not everywhere quasiconcave?
Then there may be some bundles of goods that will not be demanded at
any price; any bundle on a nonconvex part of an indifference curve will be
such a bundle.

There is a dual version of the above formula for inverse demands that
can be obtained from the expression given in Chapter 8, page 129. The
argument given there shows that the demanded bundle x must minimize
indirect utility over all prices that satisfy the budget constraint. Thus x

(9.5)



156 DEMAND (Ch. 9)
must satisfy the first-order conditions

v(p) _

=0 f '.__]_,...,k
o UL or 1

k
Zpizi =1.
i=1

Now multiply each of the first equations by p; and sum them to find

that p = Zle 6“;’ p;. Substituting this back into the first-order condi-
(3
tions, we have an expression for the demanded bundle as a function of the

normalized indirect utility function:
ov(p)
Pi

zi(p) = — 5 —~—.
g
E?=1 __6£_)Up? Py

Note the nice duality: the expression for the direct demand function,
(9.6), and the expression for the indirect demand function (9.5) have the
same form. This expression can also be derived from the definition of the
normalized indirect utility function and Roy’s identity.

(9.6)

9.6 Continuity of demand functions

Up until now we have blithely been assuming that the demand functions we
have been analyzing are nicely behaved; that is, that they are continuous
and even differentiable functions. Are these assumptions justifiable?

Referring to the Theorem of the Maximum in Chapter 27, page 506, we
see that, as long as the demand functions are well defined, they will be
continuous, at least when p >> 0 and m > 0; that is, as long as x{p,m)
is the unigque maximizing bundle at prices p and income m, then demand
will vary continuously with p and m.

If we want to ensure that demand is continuous for all p 3> 0 and m > 0,
then we need to ensure that demand is always unique. The condition we
need is that of strict convexity.

Unique demanded bundle. If preferences are strictly convez, then for
each p > 0 there is a unique bundle x that mazimizes u on the consumer’s
budget set, B(p, m).

Proof. Suppose x’ and x” both maximize u on B(p,m). Then ix' +
1x” is also in B(p,m) and is strictly preferred to x’ and x”, which is a
contradiction. il
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Loosely speaking, if demand functions are well defined and everywhere
continuous and are derived from preference maximization, then the un-
derlying preferences must be strictly convex. If not, there would be some
point where there was more than one optimal bundle at some set of prices,
as illustrated in Figure 9.2. Note that, in the case depicted in Figure 9.2,
a small change in the price brings about a large change in the demanded
bundles: the demand “function” is discontinuous.

GOOD 2 PRICE

o e Gl
Offer curve

|
Offer g
curve }
1
| |
I |
; Slope = —-p |I
x; x; GOOD 1 x; QUANTITY
Offer curve Demand curve
Discontinuous demand. Demand is discontinuous due to Figure
nonconvex preferences. 9.2
Notes

See Pollak (1969) for conditional demands. Separability is treated in Black-
orby, Primont & Russell {1979). See Deaton & Muellbauer (1980) for fur-
ther development and applications to consumer demand estimation. The
aggregation section is based on Gorman (1953). See Shafer & Sonnen-
schein (1982) for a survey of positive and negative results in aggregation.

Exercises

9.1. Suppose preferences are homothetic. Show that

Ox;(p,m) _ Oz;(p,m)
Op; Op;
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9.2. The demand function for a particular good is £ = a + bp. What are
the associated direct and indirect utility functions?

9.3. The demand function for a particular good is z = a + bp + cm. What
are the associated direct and indirect utility functions? (Hint: You have to
know how to solve a linear, nonhomogeneous differential equation to solve
this problem completely. If you can’t remember how to do this, just write
down the equation.)

9.4. The demand functions for two goods are

21 = a1 + bip1 + braps
Z2 = ag + ba1py + baps.

What restrictions on the parameters does the theory imply? What is the
associated money metric utility function?

9.5. What is the direct utility function for the previous problem?

9.6. Let (q,m) be prices and income, and let p = gq/m. Use Roy’s identity

to derive the formula
ov(p)
'Di

zi(p) = ——o~——.
ov(p)
b

9.7. Consider the utility function u(z;, 22,23) = z§2525. Is this utility
function (weakly) separable in (22,23)? What is the subutility function
for the z-good consumption? What are the conditional demands for the
z-goods, given the expenditure on the z-goods, m,?

9.8. Two goods are available, z and y. The consumer’s demand function
for the x-good is given by Inz == a — bp + ¢m, where p is the price of the
x-good relative to the y-good, and m is money income divided by the price
of the y-good.

(a) What equation would you solve to determine the indirect utility
function that would generate this demand behavior?

(b) What is the boundary condition for this differential equation?
9.9. A consumer has a utility function u(z, y, 2) = min{z,y}+2. The prices

of the three goods are given by (ps,py,p.) and the money the consumer
has to spend is given by m.
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(a) It turns out that this utility function can be written in the form
U(V(z,y),z). What is the function V(z,y)? What is the function U(V, 2)?

(b) What are the demand functions for the three goods?
(c) What is the indirect utility function?

9.10. Suppose that there are two goods, £1 and z5. Let the price of good
1 be denoted by p; and set the price of good 2 equal to 1. Let income be
denoted by y. A consumer’s demand for good 1 is given by

T = 10—])1.

(a) What is the demand function for good 2?

(b) What equation would you solve to calculate the income compensa-
tion function that would generate these demand functions?

(¢) What is the income compensation function associated with these
demand functions?

9.11. Consumer 1 has expenditure function e;(p1,p2,u1) = u1./p1p2 and
consumer 2 has utility function uz(z;,z2) = 43z3x$.

(a) What are the Marshallian (market) demand functions for each of
the goods by each of the consumers? Denote the income of consumer 1 by
m; and the income of consumer 2 by ms.

(b) For what value(s) of the parameter a will there exist an aggregate
demand function that is independent of the distribution of income?



CHAPTER 1 O

CONSUMERSY’
SURPLUS

When the economic environment changes a consumer may be made better
off or worse off. Economists often want to measure how consumers are af-
fected by changes in the economic environment, and have developed several
tools to enable them to do this.

The classical measure of welfare change examined in elementary courses
is consumer’s surplus. However, consumer’s surplus is an exact measure of
welfare change only in special circumstances. In this chapter we describe
some more general methods for measuring welfare change. These more
general methods will include consumer’s surplus as a special case.

10.1 Compensating and equivalent variations

Let us first consider what an “ideal” measure of welfare change may be. At
the most fundamental level, we would like to have a measure of the change
in utility resulting from some policy. Suppose that we have two budgets,
(p°,m®) and (p’,m’), that measure the prices and incomes that a given
consumer would face under two different policy regimes. It is convenient to



COMPENSATING AND EQUIVALENT VARIATIONS 161

think of (p® mP®) as being the status quo and (p’,m’) as being a proposed
change, although this is not the only interpretation.

Then the obvious measure of the welfare change involved in moving from
(p°, m®) to (p’,m’) is just the difference in indirect utility:

v(p’,m’) — v(p°, m°).

If this utility difference is positive, then the policy change is worth doing,
at least as far as this consumer is concerned; and if it is negative, the policy
change is not worth doing.

This is about the best we can do in general; utility theory is purely ordi-
nal in nature and there is no unambiguously right way to quantify utility
changes. However, for some purposes it is convenient to have monetary
measure of changes in consumer welfare. Perhaps the policy analyst wants
to have some rough idea of the magnitude of the welfare change for pur-
poses of establishing priorities. Or perhaps the policy analyst wants to
compare the benefits and costs accruing to different consumers. In circum-
stances such as these, it is convenient to choose a “standard” measure of
utility differences. A reasonable measure to adopt is the (indirect) money
metric utility function described in Chapter 7, page 109.

Recall that u(q; p, m) measures how much income the consumer would
need at prices q to be as well off as he or she would be facing prices p
and having income m. That is, u{q; p,m) is defined to be e(q,v(p, m)). If
we adopt this measure of utility, we find that the above utility difference
becomes

w(q; p',m') — u(a; p°, m°).
It remains to choose the base prices q. There are two obvious choices:

we may set q equal to p° or to p’. This leads to the following two measures
for the utility difference:

EV = u(p%p', ) — p(p"p°, m°) = p(p’; p',m’) — m° (10.1)
CV = u(p’;p',m’) — u(p; p%, m°) = m’ — u(p’; p°, m°).
The first measure is known as the equivalent variation. It uses the
current prices as the base and asks what income change at the current prices
would be equivalent to the proposed change in terms of its impact on utility.
The second measure is known as the compensating variation. It uses the
new prices as the base and asks what income change would be necessary to
compensate the consumer for the price change. (Compensation takes place
after some change, so the compensating variation uses the after-change
prices.)
Both of these numbers are reasonable measures of the welfare effect of a
price change. Their magnitudes will generally differ because the value of a
dollar will depend on what the relevant prices are. However, their sign will
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always be the same since they both measure the same utility differences,
just using a different utility function. Figure 10.1 depicts an example of
the equivalent and compensating variations in the two-good case.

Which measure is the most appropriate depends on the circumstances
involved and what question you are trying to answer. If you are trying to
arrange for some compensation scheme at the new prices, then the com-
pensating variation seems reasonable. However, if you are simply trying to
get a reasonable measure of “willingness to pay,” the equivalent variation
is probably better. This is so for two reasons. First, the equivalent vari-
ation measures the income change at current prices, and it is much easier
for decision makers to judge the value of a dollar at current prices than at
some hypothetical prices. Second, if we are comparing more than one pro-
posed policy change, the compensating variation uses different base prices
for each new policy while the equivalent variation keeps the base prices
fixed at the status quo. Thus, the equivalent variation is more suitable for
comparisons among a variety of projects.

Given, then, that we accept the compensating and equivalent variations
as reasonable indicators of utility change, how can we measure them in
practice? This is equivalent to the question: how can we measure p(q; p, m)
in practice?

We have already answered this question in our study of integrability the-
ory in Chapter 8. There we investigated how to recover the preferences rep-
resented by u(q; p,m) by observing the demand behavior x(p, m). Given
any observed demand behavior one can solve the integrability equations, at
least in principle, and derive the associated money metric utility function.

We have seen in Chapter 8 how to derive the money metric utility func-
tions for several common functional forms for demand functions including
linear, log-linear, semilog, and so on. In principle, we can do similar calcu-
lations for any demand function that satisfies the integrability conditions.

However, in practice it is usually simpler to make the parametric specifi-
cation in the other direction: first specify a functional form for the indirect
utility function and then derive the form of the demand functions by Roy’s
identity. After all, it is usually a lot easier to differentiate a function than
to solve a system of partial differential equations!

If we specify a parametric form for the indirect utility function, then
estimating the parameters of the associated system of demand equations
immediately gives us the parameters of the underlying utility function. We
can derive the money metric utility function—and the compensating and
equivalent variations—either algebraically or numerically without much dif-
ficulty once we have the relevant parameters. See Chapter 12 for a more
detailed description of this approach.

Of course this approach only makes sense if the estimated parameters
satisfy the various restrictions implied by the optimization model. We may
want to test these restrictions, to see if they are plausible in our particular
empirical example, and, if so, estimate the parameters subject to these
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GOOD 2 i GO0D 2

o
o

GOOD 1 GOOD 1

Equivalent variation and compensating variation. In this
diagram p, = 1 and the price of good 1 decreases from pg to p;.
Panel A depicts the equivalent variation in income—how much
additional money is needed at the original price py to make the
consumer as well off as she would be facing p;. Panel B depicts
the compensating variation in income—how much money should
be taken away from the consumer to leave him as well off as he
was facing price pg.

restrictions.

In summary: the compensating and equivalent variations are in fact ob-
servable if the demand functions are observable and if the demand functions
satisfy the conditions implied by utility maximization. The observed de-
mand behavior can be used to construct a measure of welfare change, which
can then be used to analyze policy alternatives.

10.2 Consumer’s surplus

The classic tool for measuring welfare changes is consumer’s surplus.
If z(p) is the demand for some good as a function of its price, then the
consumer’s surplus associated with a price movement from p° to p’ is

’

14
CS = / o(t) dt.
pO

This is simply the area to the left of the demand curve between p° and
p’. It turns out that when the consumer’s preferences can be represented
by a quasilinear utility function, consumer’s surplus is an exact measure
of welfare change. More precisely, when utility is quasilinear, the compen-
sating variation equals the equivalent variation, and both are equal to the
consumer’s surplus integral. For more general forms of the utility function,

Figure
10.1
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the compensating variation will be different from the equivalent variation
and consumer’s surplus will not be an exact measure of welfare change.
However, even when utility is not quasilinear, consumer’s surplus may be
a reasonable approximation to more exact measures. We investigate these
ideas further below.

10.3 Quasilinear utility

Suppose that there exists a monotonic transformation of utility that has
the form
U(zo,T1,---,Tk) = Zo + u(z1, ..., Zk).

Note that the utility function is linear in one of the goods, but (possibly)
nonlinear in the other goods. For this reason we call this a quasilinear
utility function.

In this section we will focus on the special case where k = 1, so that the
utility function takes the form xy +u(z1), although everything that we say
will work if there are an arbitrary number of goods. We will assume that
u(x1) is a strictly concave function.

Let us consider the utility maximization problem for this form of utility:

max Zo + u{x1)

To,T1

such that zg + p1z1 = m.

It is tempting to substitute into the objective function and reduce this
problem to the unconstrained maximization problem

max u(z1) +m — p121.
1
This has the obvious first-order condition

ul(zl) =DP1,

which simply requires that the marginal utility of consumption of good 1
be equal to its price.

By inspection of the first-order condition, the demand for good 1 is only
a function of the price of good 1, so we can write the demand function
as 21(p1). The demand for good 0 is then determined from the budget
constraint, £o = m — p;z1(p;). Substituting these demand functions into
the utility function gives us the indirect utility function

V(p1,m) = u(z1(p1)) + m — pr1z1(p1) = v(p1) + m,

where v(p1) = u(z1(p1)) — pr1(P1)-
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This approach is perfectly fine, but it hides a potential problem. Upon
reflection, it is clear that demand for good 1 can’t be independent of income
for all prices and income levels. If income is small enough, the demand for
good 1 must be constrained by income.

Suppose that we write the utility maximization problem in a way that
explicitly recognizes the nonnegativity constraint on zg:

max u{T;) + T
Z0,T1

such that pyz; + 20 =m
Ty > 0.

Now we see that we will get two classes of solutions, depending on whether
g > 0or g = 0. If zp > 0, we have the solution that we described
above—the demand for good 1 depends only on the price of good 1 and is
independent of income. If xg = 0, then indirect utility will just be given
by u(m/pi).

Think of starting the consumer at m = 0 and increasing income by a
small amount. The increment in utility is then u'(m/py)/p;. If this is
larger than 1, then the consumer is better off spending the first dollar of
income on good 1 rather than good 0. We continue to spend on good 1 until
the marginal utility of an extra dollar spent on that good just equals 1; that
is, until the marginal utility of consumption equals price. All additional
income will then be spent on the z¢ good.

The quasilinear utility function is often used in applied welfare economics
since it has such a simple demand structure. Demand only depends on
price—at least for large enough levels of income—and there are no income
effects to worry about. This turns out to simplify the analysis of market
equilibrium. You should think of this as modeling a situation where the
demand for a good isn’t very sensitive to income. Think of your demand
for paper or pencils: how much would your demand change as your income
changes? Most likely, any increases in income would go into consumption
of other goods.

Furthermore, with quasilinear utility the integrability problem is very
simple. Since the inverse demand function is given by pi(z;) = u/(z1), it
follows that the utility associated with a particular level of consumption
of good 1 can be recovered from the inverse demand curve by a simple
integration:

u(z;) ~ u(0) = /:1 o (t) dt = /:1 p1(t) dt.

The total utility from choosing to consume z; will consist of the utility
from the consumption good 1, plus the utility from the consumption of
good 0:

u(zi(p1)) + m —prz1(p1) = /0”‘1 p1(t)dt +m — p1z1(p1)-
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If we disregard the constant m, the expression on the right-hand side of
this equation is simply the area under the demand curve for good 1 minus
the expenditure on good 1. Alternatively, this is the area to the left of the
demand curve.

Another way to see this is to start with the indirect utility function,
v(p1) + m. By Roy’s law, z1(p1) = —v'(p1). Integrating this equation, we

have
oo

v(p1) +m = / z1(t) dt + m.
P1

This is the area to the left of the demand curve down to the price pi,

which is just another way of describing the same area as described in the

last paragraph.

10.4 Quasilinear utility and money metric utility

Suppose that utility takes the quasilinear form u(x;) + zg. We have seen
that for such a utility function the demand function z;(p;) will be inde-
pendent of income. We saw above that we could recover an indirect utility
function consistent with this demand function simply by integrating with
respect to p;.

Of course, any monotonic transformation of this indirect utility function
is also an indirect utility function that describes the consumer’s behavior.
If the consumer makes choices that maximize consumer’s surplus, then he
also maximizes the square of consumer’s surplus.

We saw above that the money metric utility function was a particu-
larly convenient utility function for many purposes. It turns out that for
quasilinear utility function, the integral of demand is essentially the money
metric utility function.

This follows simply by writing down the integrability equations and ver-
ifying that consumer’s surplus is the solution to these equations. If z1(p;)
is the demand function, the integrability equation is

du(t; q,
= d? ™) — ()

u(g; g, m) = m.

It can be verified by direct calculation that the solution to these equations
is given by
q
u(p;g,m) = / z1(t) dt + m.
»

The expression on the right is simply the consumer’s surplus associated
with a price change from p to ¢ plus income.
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For this form of the money metric utility function the compensating and
equivalent variations take the form

EV = p(p% ', m') — u(p® 1%, m°) = A(P°, p)) + m' — m®

CV = u(p’sp',m') — u(@;p°m®) = A(P°, p) + m' — m°.
In this special case the compensating and equivalent variations coincide. It
is not hard to see the intuition behind this result. Since the compensation
function is linear in income the value of an extra dollar—the marginal util-
ity of income—is independent of price. Hence the value of a compensating
or equivalent change in income is independent of the prices at which the
value is measured.

10.5 Consumer’s surplus as an approximation

We have seen that consumer’s surplus is an exact measure of the compen-
sating and equivalent variation only when the utility function is quasilinear.
However, it may be a reasonable approximation in more general circum-
stances.

For example, consider a situation where only the price of good 1 changes
from p° to p’ and income is fixed at m = m" = m’. In this case, we can
use the equation (10.1) and the fact that u(p;p,m) = m to write

EV = u(p%p',m) — p(@";p°,m) = u(p"p’,m) — u(p';p',m)
CV = u(p';p',m) — p(p’;p° m) = u(®®; p°, m) — n(@’;p°, m).

We have written these expressions as a function of p alone, since all other
prices are assumed to be fixed. Letting u® = v(p®, m) and v/ = v(p’,m) and
using the definition of the money metric utility function given in Chapter 7,
page 109, we have

EV = e(pov 'LL/) - e(pl7u,)

CV = e(p07 uO) - e(p/a UO)‘

Finally, using the fact that the Hicksian demand function is the derivative
of the expenditure function, so that h(p,u) = de/dp, we can write these
expressions as

pO
EV = e(p®, ') — e(p ) = / h(p, ') dp

F " (10.2)
CV =e(p’,u) ~e(@,u’) = [ h(p,u®)dp.
p/

It follows from these expressions that the compensating variation is the
integral of the Hicksian demand curve associated with the initial level of
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utility, and the equivalent variation is the integral of the Hicksian demand
curve associated with the final level of utility. The correct measure of
welfare is an integral of a demand curve—but you have to use the Hicksian
demand curve rather than the Marshallian demand curve.

However, we can use (10.2) to derive a useful bound. The Slutsky equa-
tion tells us that

Ohlpw) _ dzpm) | Ozlom)
dp dp om

If the good in question is a normal good, the derivative of the Hicksian
demand curve will be larger than the derivative of the Marshallian demand
curve, as depicted in Figure 10.2.

PRICE

hip, u)

Consumer's
surplus

QUANTITY
Bounds on consumer’s surplus. For a normal good, the
Hicksian demand curves are steeper than the Marshallian de-
mand curve. Hence, the area to the left of the Marshallian de-
mand curve is bounded by the areas under the Hicksian demand
curves.

It follows that the area to the left of the Hicksian demand curves will
bound the area to the left of the Marshallian demand curve. In the case
depicted, p° > p’ so all of the areas are positive. It follows that EV >
consumer’s surplus > CV.

10.6 Aggregation

The above relationships among compensating variation, equivalent vari-
ation, and consumer’s surplus all hold for a single consumer. Here we
investigate some issues involving many consumers.
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We have seen in Chapter 9, page 153, that aggregate demand for a good
will be a function of price and aggregate income only when the indirect
utility function for agent ¢ has the Gorman form

vi(p,mi) = a;(p) + b(p)m

In this case the aggregate demand function for each good will be derived
from an aggregate indirect utility function that has the form

Z a;(p) + b(p)M

t=1

where M =30 m;.
We saw above that the indirect utility function associated with quasilin-
ear preferences has a form

v;(p) + m;.

This is clearly a special case of the Gorman form with b(p) = 1. Hence,
the aggregate indirect utility function that will generate aggregate demand
is simply V(p) + M = Y, vi(p) + > 1e s M-

How does this relate to aggregate consumers’ surplus? Reverting to the
case of a single price for simplicity, Roy’s law shows that the function v;(p)
is given by

vi(p) = / " o) de

It follows that

V() =§w ij/wz,(t -/

oo N
> it) dt.
P =1
That is, the indirect utility function that generates the aggregate demand
function is simply the integral of the aggregate demand function.

If all consumers have quasilinear utility functions, then the aggregate
demand function will appear to maximize aggregate consumer’s surplus.
However, it is not entirely obvious that aggregate consumer’s surplus is
appropriate for welfare comparisons. Why should the unweighted sum of a
particular representation of utility be a useful welfare measure? We exam-
ine this issue in Chapter 13, page 225. As it turns out, aggregate consumers’
surplus is the appropriate welfare measure for quasilinear utility, but this
case is rather special. In general, aggregate consumers’ surplus will not
be an exact welfare measure. However, it is often used as an approximate
measure of consumer welfare in applied work.
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10.7 Nonparametric bounds

We've seen how Roy’s identity can be used to calculate the demand function
given a parametric form for indirect utility. Integrability theory can be used
to calculate a parametric form for the money metric utility function if we
are given a parametric form for the demand function. However, each of
these operations requires that we specify a parametric form for either the
demand function or the indirect utility function.

It is of interest to ask how far we can go without having to specify a
parametric form. As it turns out it is possible to derive tight nonparametric
bounds on the money metric utility function in an entirely nonparametric
way.

We’ve seen in the discussion of recoverability in Chapter 8 that it is pos-
sible to construct sets of consumption bundles that are “revealed preferred”
or “revealed worse” than a given consumption bundle. These sets can be
thought of as inner and outer bounds to the consumer’s preferred set.

Let NRW (xg) be the set of points “not revealed worse” than xg. This
is just the complement of the set RW (xg). We know from Chapter 8 that
the true preferred set associated with xo, P(Xp), must contain RP(xp) and
be contained in the set of points NRW (xg).

We illustrate this situation in Figure 10.3. In order not to clutter the
diagram, we’ve left out many of the budget lines and observed choices and
have only depicted RP(xg) and RW(xy). We’ve also shown the “true”
indifference curve through x¢. By definition, the money metric utility of
Xg is defined by

m(p,Xo) = min px

such that u(x) > u(xp).
This is the same problem as
m(p,Xo) = min px
' such that x in P(xp).
Define m™*(p, xo) and m™(p, xo) by
m™(p,x,) = min px
such that x in NRW (xg),

and
m*(p,Xp) = min px
X

such that x in RP(xg).

Since NRW (xg) D P(x¢) D RP(xo), it follows from the standard sort of
argument that m*(p,xg) > m(p,%0) > m~(p,xo). Hence, the overcom-
pensation function, m*(p,x¢), and the undercompensation func-
tion, m~(p,xp), bound the true compensation function, m(p, xp).
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Goob2 Indifference

curve

RP(x;)

m*(p, x;)
m(p, x,) 3 g /
AW(x;)

m(p, x;)

GOOD 1

Bounds on the money metric utility. The true preferred
set, P(xq), contains RP(xq) and is contained in NRW (xq).
Hence the minimum expenditure over P(xg) lies between the
two bounds, as illustrated.

Notes

The concepts of compensating and equivalent variation and their relation-
ship to consumer’s surplus is due to Hicks (1956). See Willig (1976) for
tighter bounds on consumer’s surplus. The nonparametric bounds on the
money metric utility function are due to Varian (1982a).

Exercises

10.1. Suppose that utility is quasilinear. Show that the indirect utility
function is a convex function of prices.

10.2. Ellsworth’s utility function is U(z,y) = min{z,y}. Ellsworth has
$150 and the price of  and the price of y are both 1. Ellsworth’s boss is
thinking of sending him to another town where the price of x is 1 and the
price of y is 2. The boss offers no raise in pay. Ellsworth, who understands
compensating and equivalent variation perfectly, complains bitterly. He
says that although he doesn’t mind moving for its own sake and the new
town is just as pleasant as the old, having to move is as bad as a cut in
pay of $A. He also says he wouldn’t mind moving if when he moved he got
a raise of $B. What are A and B equal to?

Figure
10.3



CHAPTER 1 1

UNCERTAINTY

Until now, we have been concerned with the behavior of a consumer under
conditions of certainty. However, many choices made by consumers take
place under conditions of uncertainty. In this section we explore how the
theory of consumer choice can be used to describe such behavior.

11.1 Lotteries

The first task is to describe the set of choices facing the consumer. We shall
imagine that the choices facing the consumer take the form of lotteries.
A lottery is denoted by pox @ (1 — p) o y. This notation means: “the
consumer receives prize x with probability p and prize y with probability
(1 — p).” The prizes may be money, bundles of goods, or even further
lotteries. Most situations involving behavior under risk can be put into
this lottery framework.

We will make several assumptions about the consumer’s perception of
the lotteries open to him.

Ll. loz® (1 - 1) oy ~ z. Getting a prize with probability one is the
same as getting the prize for certain.
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L2. poz® (1 —p)oy~ (1 —p)oydpox. The consumer doesn’t care
about the order in which the lottery is described.

L3. go(poz®(1-ploy)@d(l-qgloy~(gp)ox®(l1—gp)oy. A
consumer’s perception of a lottery depends only on the net probabilities
of receiving the various prizes.

Assumptions (L1) and (L2) appear to be innocuous. Assumption (L3},
sometimes called “reduction of compound lotteries,” is somewhat suspect
since there is some evidence to suggest that consumers treat compound
lotteries different than one-shot lotteries. However, we do not pursue this
point here.

Under these assumptions we can define £, the space of lotteries available
to the consumer. The consumer is assumed to have preferences on this
lottery space: given any two lotteries, he can choose between them. As
usual we will assume the preferences are complete, reflexive, and transitive.

The fact that lotteries have only two outcomes is not restrictive since
we have allowed the outcomes to be further lotteries. This allows us to
construct lotteries with arbitrary numbers of prizes by compounding two-
prize lotteries. For example, suppose we want to represent a situation with
three prizes z, y, and z where the probability of getting each prize is one
third. By the reduction of compound lotteries, this lottery is equivalent to
the lottery

2 [1 1 1

30[2oz®20yJ®3oz.
According to assumption L3 above, the consumer only cares about the net
probabilities involved, so this is indeed equivalent to the original lottery.

11.2 Expected utility

Under minor additional assumptions, the theorem concerning the existence
of a utility function described in Chapter 7, page 95, may be applied to
show that there exists a continuous utility function u which describes the
consumer’s preferences; that is, poz @ (1 —ploy > gow G (1 —q)o z if
and only if

ulpoz® (1 —ploy) >u(gowd (1—gq)oz).

Of course, this utility function is not unique; any monotonic transform
would do as well. Under some additional hypotheses, we can find a par-
ticular monotonic transformation of the utility function that has a very
convenient property, the expected utility property:

u(poz @ (1-p)oy)=pu(z)+ (1 - plu(y).
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The expected utility property says that the utility of a lottery is the
expectation of the utility from its prizes. We can compute the utility
of any lottery by taking the utility that would result from each outcome,
multiplying that utility times the probability of occurrence of that outcome,
and then summing over the outcomes. Utility is additively separable over
the outcomes and linear in the probabilities.

It should be emphasized that the existence of a utility function is not at
issue; any well-behaved preference ordering can be represented by a utility
function. What is of interest here is the existence of a utility function with
the above convenient property. For that we need these additional axioms:

Ul. {pin [0,1): poz®(1—p)oy > 2} and {pin [0,1]: z > poxH(1—p)oy}
are closed sets for all z,y, and z in L.

U2. Ifz~y, thenpoz® (1 —ploz~poyd(l—p)oz.

Assumption (Ul) is an assumption of continuity; it is relatively innocu-
ous. Assumption (U2) says that lotteries with indifferent prizes are indif-
ferent. That is, if we are given a lottery poz @ (1 —p) oz and we know that
x ~ y, then we can substitute y for z to construct a lottery poy@®(l—p)oz
that the consumer regards as being equivalent to the original lottery. This
assumption appears quite plausible.

In order to avoid some technical details we will make two further as-
sumptions.

U3. There is some best lottery b and some worst lottery w. For any z
inf,br-zxz>w.

U4. A lottery pob @ (1 — p) o w is preferred to gob @ (1 — ¢) ow if and
only if p > q.

Assumption (U3) is purely for convenience. Assumption (U4) can be
derived from the other axioms. It just says that if one lottery between the
best prize and the worse prize is preferred to another it must be because it
gives higher probability of getting the best prize.

Under these assumptions we can state the main theorem.

Expected utility theorem. If (L, >) satisfy the above arioms, there is
a utility function u defined on L that satisfies the expected utility property:

u(poz @ (1-p)oy)=pu(x)+ (1-pu(y)

Proof. Define u(b) = 1 and u(w) = 0. To find the utility of an arbitrary
lottery z, set u(z) = p, where p, is defined by

pob®(l—p,)ow~ 2. (11.1)
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In this construction the consumer is indifferent between z and a gamble
between the best and the worst outcomes that gives probability p, of the
best outcome.

To ensure that this is well defined, we have to check two things.

(1) Does p, exist? The two sets {p in [0,1] : pob® (1 —p)ow = z}
and {pin [0,1] : 2 = po b @ (1 — p) o w} are closed and nonempty, and
every point in [0,1] is in one or the other of the two sets. Since the unit
interval is connected, there must be some p in both—but this will just be
the desired p,.

(2) Is p, unique? Suppose p, and p/, are two distinct numbers and
that each satisfies (11.1). Then one must be larger than the other. By
assumption (U4), the lottery that gives a bigger probability of getting the
best prize cannot be indifferent to one that gives a smaller probability.
Hence, p, is unique and u is well defined.

We next check that v has the expected utility property. This follows
from some simple substitutions:
poz®(1-p)oy
~1popeob®(1—pg)ow|®(l—p)olp,ob®(1-—p,)ow]
~2 [ppe + (L= p)py| 0b@® [1 — ppz — (1 — p)py] o w
~3 [pu(z) + (1 — plu(y)] 0 b & [1 — pu(z) — (1 — p)u(y)] o w.

Substitution 1 uses (U2) and the definition of p, and p,. Substitution 2
uses (L.3), which says only the net probabilities of obtaining b or w matter.
Substitution 3 uses the construction of the utility function.

It follows from the construction of the utility function that

upoz® (1-p)oy) =pu(r) + (1 - plu(y).
Finally, we verify that u is a utility function. Suppose that x > y. Then

u(z) =pg such that z ~pyob® (1 —pz)ow
u(y) = py such that y ~p, 0 b® (1 — py) o w.

By axiom (U4), we must have u(z) > u(y).

11.3 Uniqueness of the expected utility function

We have now shown that there exists an expected utility function u: £ — R.
Of course, any monotonic transformation of u will also be a utility function
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that describes the consumer’s choice behavior. But will such a monotonic
transform preserve the expected utility property? Does the construction
described above characterize expected utility functions in any way?

It is not hard to see that, if u(-) is an expected utility function describing
some consumer, then so is v{-) = au(-) + ¢ where a > 0; that is, any affine
transformation of an expected utility function is also an expected utility
function. This is clear since

v(poz®(l—p)oy) =au(poz®(l—p)oy) +c
= a[pu(z) + (1 - p)u(y)] + ¢
= plau(z) + c] + (1 - p)[au(y) + ]
= pu(z) + (1 - p)u(y).

It is not much harder to see the converse: that any monotonic transform
of u that has the expected utility property must be an affine transform.
Stated another way:

Uniqueness of expected utility function. An expected utility function
is unique up to an affine transformation.

Proof. According to the above remarks we only have to show that, if a
monotonic transformation preserves the expected utility property, it must
be an affine transformation. Let f : R — R be a monotonic transform of u
that has the expected utility property. Then

flupor® (1 —-p)oy)) =pf(uz))+ (1 -p)f(u(y)),

flpu(z) + (1 — plu(y)) = pf(u(z)) + (1 — p) f(u(y)).

But this is equivalent to the definition of an affine transformation. (See
Chapter 26, page 482.) 1

11.4 Other notations for expected utility

We have proved the expected utility theorem for the case where there are
two outcomes to the lotteries. As indicated earlier, it is straightforward
to extend this proof to the case of a finite number of outcomes by using
compound lotteries. If outcome z, is received with probability p, for i =
1,...,n, then the expected utility of this lottery is simply

Zpiu(mi)~ (11.2)
i=1
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Subject to some minor technical details, the expected utility theorem
also holds for continuous probability distributions. If p(z) is a probability
density function defined on outcomes z, then the expected utility of this
gamble can be written as

/u(m)p(z) dz. (11.3)

We can subsume both of these cases by using the expectation operator.
Let X be a random variable that takes on values denoted by z. Then
the utility of X is also a random variable, u(X). The expectation of
this random variable, Eu(X) is simply the expected utility associated with
the lottery X. In the case of a discrete random variable, Eu(X) is given
by (11.2), and in the case of a continuous random variable Eu(X) is given
by (11.3).

11.5 Risk aversion

Let us consider the case where the lottery space consists solely of gambles
with money prizes. We know that if the consumer’s choice behavior satisfies
the various required axioms, we can find a representation of utility that
has the expected utility property. This means that we can describe the
consumer’s behavior over all money gambles if we only know this particular
representation of his utility function for money. For example, to compute
the consumer’s expected utility of a gamble poz @® (1 — p) oy, we just look
at pu(z) + (1 — p)u(y).

This construction is illustrated in Figure 11.1 for p = % Notice that in
this example the consumer prefers to get the expected value of the lottery.
That is, the utility of the lottery u(poz @ (1 —p)oy) is less than the utility
of the expected value of the lottery, pr + (1 — p)y. Such behavior is called
risk aversion. A consumer may also be risk loving; in such a case, the
consumer prefers a lottery to its expected value.

If a consumer is risk averse over some region, the chord drawn between
any two points of the graph of his utility function in this region must lie
below the function. This is equivalent to the mathematical definition of
a concave function. Hence, concavity of the expected utility function is
equivalent to risk aversion.

It is often convenient to have a measure of risk aversion. Intuitively,
the more concave the expected utility function, the more risk averse the
consumer. Thus, we might think we could measure risk aversion by the
second derivative of the expected utility function. However, this definition
is not invariant to changes in the expected utility function: if we multiply
the expected utility function by 2, the consumer’s behavior doesn’t change,
but our proposed measure of risk aversion does. However, if we normalize
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Expected utility of a gamble. The expected utility of the
gamble is fu(z) + fu(y). The utility of the expected value of
the gamble is u(3z + 3y). In the case depicted the utility of the
expected value is higher than the expected utility of the gamble,
so the consumer is risk averse.

the second derivative by dividing by the first, we get a reasonable measure,
known as the Arrow-Pratt measure of (absolute) risk aversion:

The following analysis gives further rationale for this measure. Let us
represent a gamble now by a pair of numbers (z;, %) where the consumer
gets x; if some event E occurs and s if not-F occurs. Then we define
the consumer’s acceptance set to be the set of all gambles the consumer
would accept at an initial wealth level w. If the consumer is risk averse,
the acceptance set will be a convex set. The boundary of this set—the
set of indifferent gambles—can be given by an implicit function z3(z;), as
depicted in Figure 11.2.

Suppose that the consumer’s behavior can be described by the maxi-
mization of expected utility. Then z5(z;) must satisfy the identity:

pu(w + 1) + (1 — plu(w + z2(z1)) = w(w).

The slope of the acceptance set boundary at (0,0) can be found by
differentiating this identity with respect to 1 and evaluating this derivative
at x1 = 0:

pu’ (w) + (1 — p)u/(w)zh(0) = 0. (11.4)

Solving for the slope of the acceptance set, we find
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X3

Xq

X, (xq)

Slope = - p/(1 - p)

The acceptance set. This set describes all gambles that
would be accepted by the consumer at his initial level of wealth.
If the consumer is risk averse, the acceptance set will be convex.

That is, the slope of the acceptance set at (0,0) gives us the odds. This
gives us a nice way of eliciting probabilities—find the odds at which a
consumer is just willing to accept a small bet on the event in question.

Now suppose that we have two consumers who have identical probabili-
ties on the event E. It is natural to say that consumer ¢ is more risk averse
than consumer j if consumer i’s acceptance set is contained in consumer
j’s acceptance set. This is a global statement about risk aversion for it says
that j will accept any gamble that i will accept. If we limit ourselves to
small gambles, we get a more useful measure.

It is natural to say that consumer ¢ is locally more risk averse than
consumer j if ¢’s acceptance set is contained in 7’s acceptance set in a
neighborhood of the point (0,0). This means that j will accept any small
gamble that i will accept. If the containment is strict, then ¢ will accept
strictly fewer small gambles than j will accept.

It is not hard to see that consumer ¢ is locally more risk averse than
consumer j if consumer i’s acceptance set is “more curved” than consumer
j’s acceptance set near the point (0,0). This is useful since we can check
the curvature of the acceptance set by calculating the second derivative of
z2(z1). Differentiating the identity (11.4) once more with respect to zi,
and evaluating the resulting derivative at zero, we find

pu’ (w) + (1 = p)u” (w)z3(0)23(0) + (1 — p)u’(w)z3(0) = 0.

Using the fact that z5(0) = —p/(1 — p), we have

40 = 2 ||

Figure
11.2
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This expression is proportional to the Arrow-Pratt measure of local risk
aversion defined above. We can conclude that an agent j will take more
small gambles than agent i if and only if agent ¢ has a larger Arrow-Pratt
measure of local risk aversion.

EXAMPLE: The demand for insurance

Suppose a consumer initially has monetary wealth W. There is some prob-
ability p that he will lose an amount L—for example, there is some proba-
bility his house will burn down. The consumer can purchase insurance that
will pay him ¢ dollars in the event that he incurs this loss. The amount of
money that he has to pay for ¢ dollars of insurance coverage is 7q; here
is the premium per dollar of coverage.

How much coverage will the consumer purchase? We look at the utility
maximization problem

max pu(W — L — g+ q) + (1 — p)u(W — 7q).
Taking the derivative with respect to ¢ and setting it equal to zero, we find
pu/ (W — L+ g*(1—m)(1— ) — (1 — p)u/ (W — mg")m = 0
vW-L+(1-m)g*) (Q1-p) =

u' (W — mg*) - p l—m
If the event occurs, the insurance company receives g — g dollars. If the
event doesn’t occur, the insurance company receives wq dollars. Hence, the
expected profit of the company is

(1-p)rq—p(1 —7)q.

Let us suppose that competition in the insurance industry forces these
profits to zero. This means that

—p(l-m)g+ (1 —p)mg =0,

from which it follows that = = p.

Under the zero-profit assumption the insurance firm charges an actuar-
tally fair premium: the cost of a policy is precisely its expected value, so
that p = 7. Inserting this into the first-order conditions for utility maxi-
mization, we find

(W —L+(1-n)q*) =u' (W —ng*).

If the consumer is strictly risk averse so that u” (W) < 0, then the above
equation implies
W-L+(1-mg*=W —nq".
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from which it follows that L = ¢*. Thus, the consumer will completely
insure himself against the loss L.

This result depends crucially on the assumption that the consumer can-
not influence the probability of loss. If the consumer’s actions do affect
the probability of loss, the insurance firms may only want to offer partial
insurance, so that the consumer will still have an incentive to be careful.
We investigate a model of this sort in Chapter 25, page 455.

11.6 Global risk aversion

The Arrow-Pratt measure seems to be a sensible interpretation of local
risk aversion: one agent is more risk averse than another if he is willing
to accept fewer small gambles. However, in many circumstances we want
a global measure of risk aversion—that is, we want to say that one agent
is more risk averse than another for all levels of wealth. What are natural
ways to express this condition?

The first plausible way is to formalize the notion that an agent with
utility function A(w) is more risk averse than an agent with utility function
B(w) is to require that

_A”(w) o _B”(’w)
Al(w) B'(w)

for all levels of wealth w. This simply means that agent A has a higher
degree of risk aversion than agent B everywhere.

Another sensible way to formalize the notion that agent A is more risk
averse than agent B is to say that agent A’s utility function is “more
concave” than agent B’s. More precisely, we say that agent A’s utility
function is a concave transformation of agent B’s; that is, there exists
some increasing, strictly concave function G(-) such that

A(w) = G(B(w)).

A third way to capture the idea that A is more risk averse than B is to
say that A would be willing to pay more to avoid a given risk than B would.
In order to formalize this idea, let € be a random variable with expectation
of zero: E¢ = 0. Then define 7 4(€) to be the maximum amount of wealth
that person A would give up in order to avoid facing the random variable €.
In symbols, this risk premium is

A(w — wa(€)) = EA(w + €).

The left-hand side of this expression is the utility from having wealth re-
duced by 74(€) and the right-hand side is the expected utility from facing
the gamble €. It is natural to say that person A is (globally) more risk
averse than person B if m4(€) > mg(€) for all w.
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It may seetn difficult to choose among these three plausible sounding
interpretations of what it might mean for one agent to be “globally more
risk averse” than another. Luckily, it is not necessary to do so: all three
definitions turn out to be equivalent! As one step in the demonstration of
this fact we need the following result, which is of great use in dealing with
expected utility functions.

Jensen’s inequality. Let X be a nondegenerate random variable and
F(X) be a strictly concave function of this random variable. Then Ef(X) <
fEX).

Proof. This is true in general, but is easiest to prove in the case of a
differentiable concave function. Such a function has the property that at
any point Z, f(z) < f(Z) + f'(Z)(z — ). Let X be the expected value of
X and take expectations of each side of this expression, we have

Ef(X) < f(X)+ f(X)EX - X) = f(X),
from which it follows that
Ef(X) < f(X) = f(EX).
]

Pratt’s theorem. Let A(w) and B(w) be two differentiable, increas-
ing and concave ezpected utility functions of wealth. Then the following
properties are equivalent.

1) —A"(w)/A"(w) > —B"(w)/B'(w) for all w.

2) A(w) = G(B(w)) for some increasing strictly concave function G.
3) ma(€) > mp(€) for all random variables € with E¢ = 0.

Proof.

(1) implies (2). Define G(B) implicitly by A(w) = G(B{w)). Note that
monotonicity of the utility functions implies that G is well defined—i.e.,
that there is a unique value of G(B) for each value of B. Now differentiate
this definition twice to find
A'(w) = G'(B)B'(w)
A"(w) = G"(B)B'(w)? + G'(B)B" (w).
Since A'(w) > 0 and B'(w) > 0, the first equation establishes G'(B) > 0.
Dividing the second equation by the first gives us
A'(w)  G"(B) . B"(w)
= B .
Aw) ~ B > W B
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Rearranging gives us

G"(B) ps
o)

3 A"(w) B“(’UJ)

- A(w)  B'(w)

<0,

where the inequality follows from (1). This shows that G”(B) < 0, as
required.

(2) implies (3). This follows from the following chain of inequalities:

A(w—m4) = FA(w + €) = EG(B(w + €))
< G(EB(w+¢€)) = G(B(w — mg))
= A(w — mpg).

All of these relationships follow from the definition of the risk premium ex-
cept for the inequality, which follows from Jensen’s inequality. Comparing
the first and the last terms, we see that w4 > 7.

(3) implies (1). Since (3) holds for all zero-mean random variables €, it
must hold for arbitrarily small random variables. Fix an €, and consider
the family of random variables defined by té for ¢ in [0,1]. Let 7 (t) be the
risk premium as a function of ¢t. The second-order Taylor series expansion
of 7(t) around ¢ = 0 is given by

x(t) ~ 7(0) + (0}t + %ﬂ”(O)tz. (11.5)

We will calculate the terms in this Taylor series in order to see how (%)
behaves for small ¢. The definition of (t) is

A{w - n(t)) = EA(w + té).

It follows from this definition that 7(0) = 0. Differentiating the definition
twice with respect to t gives us

—A'(w —n(t))n'(t) = E[A (w + té)d]
A (w = (1))’ (t)? — A'(w — 7(t))n" (t) = E[A" (w + t&)&?).

(Some readers may not be familiar with the operation of differentiating
an expectation. But taking an expectation is just another notation for a
sum or an integral, so the same rules apply: the derivative of an expectation
is the expectation of the derivative.)

Evaluating the first expression when ¢ = 0, we see that «'(0) = 0. Eval-
uating the second expression when ¢ = 0, we see that

EA" (w)é? A"(w) ,

7\’”(0) == A'(w) - A’ (w) g
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where 02 is the variance of €. Plugging the derivatives into equation (11.5)

for 7(t), we have
A”(w) o2 t2

Al(w) 2

This implies that for arbitrarily small values of ¢, the risk premium depends
monotonically on the degree of risk aversion, which is what we wanted to
show. Il

m(t) ~0+0—

EXAMPLE: Comparative statics of a simple portfolio problem

Let us use what we have learned to analyze a simple two-period portfolio
problem involving two assets, one with a risky return and one with a sure
return. Since the rate of return on the risky asset is uncertain, we denote
it by a random variable R.

Let w be initial wealth, and let a > 0 be the dollar amount invested in
the risky asset. The budget constraint implies that w — a is the amount
invested in the sure asset. For convenience we assume that the sure asset
has a zero rate of return.

In this case the second-period wealth can be written as

W=a(l1+R)+w—-a=aR+w.

Note that second-period wealth is a random variable since R is a random
variable. The expected utility from investing a in the risky asset can be

written as _
v(a) = Bu(w + aR),

and the first two derivatives of expected utility with respect to a are
v'(a) = Ev'(w+ aR)R
v"(a) = Bu"(w + aR)R2.

Note that risk aversion implies that v”(a) is everywhere negative, so the
second-order condition will automatically be satisfied.

Let us first consider boundary solutions. Evaluating the first derivative
at a = 0, we have v'(0) = Ev/(w)R = «/(w)ER. It follows that if ER < 0,
v'(0) < 0, and, given strict risk aversion, v’(a) < 0 for all a > 0. Hence,
a = 0 is optimal if and only if ER < 0. That is, a risk averter will
choose zero investment in the risky asset if and only if its expected return
is nonpositive. _

Conversely, if ER > 0, it follows that v'(0) = u/(w)ER > 0, so the
individual will generally want to invest a positive amount in the risky asset.
The optimal investment will satisfy the first-order condition

Eu'(w+aR)R =0, (11.6)
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which simply requires that the expected marginal utility of wealth equals
Z€ro.

Let us examine the comparative statics of this choice problem. First we
look at how a changes as w changes. Let a(w) be the optimal choice of a
as a function of w; this must identically satisfy the first-order condition

Ev'(w+ a(w)R)R=0.
Differentiating with respect to w gives us
Eu'(w+ aR)R[1 + d'(w)R] =0,
or L -
_ Eu'(w+aR)R
Eu"(w + aR)R?’

As usual, the denominator is negative because of the second-order condi-
tion, so we see that

a'(w) =

sign o' (w) = sign Bu”(w + aR)R.

The sign of the expression on the right-hand side is not entirely obvious.
However, it turns out that it is determined by the behavior of absolute risk
aversion, r(w).

Risk aversion. Eu”(w + aR)R is positive, negative, or zero as r(w) is
decreasing, increasing, or constant.

Proof. We show that r'(w) < 0 implies that Eu”(w +aR)R > 0, since this
is the most reasonable case. The proofs of the other cases are similar.
Consider first the case where R > 0. In this case we have

- u’(w+ aR
r(w+aR) = _—u’((T{:a_R)) < r(w),
which can be rewritten as
u'(w+aR) > —r(w)u' (w+ aR). (11.7)
Since R > 0, s s
uw'(w+aR)R > —r(w)u'(w + aR)R. (11.8)

Now consider the case where R < 0. Examining (11.7), we see that
decreasing absolute risk aversion implies

v (w+ aR) < —r(w)u'(w + aR).
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Since R < 0, we have
u"(w+aR)R > —r(w)u/(w + aR)R.

Comparing this to equation (11.8) we see that (11.8) must hold both for
R > 0and R < 0. Hence, taking expectation over all values of R, we have

Eu'(w+ aR)R > —r(w)Ev (w + aR)R = 0,

where the last equality follows from the first-order conditions. il

The lemma gives our result: the investment in the risky asset will be
increasing, constant, or decreasing in wealth as risk aversion is decreasing,
constant, or increasing in wealth.

We turn now to investigating how the demand for the risky asset changes
as the probability distribution of its return changes. One way to parame-
terize shifts in the random rate of return is to write (1 4 h)R where h is
a shift variable. When h = 0 we have the original random variable; if h is
positive, this means that every realized return is h percent larger.

Replacing R by (1 + k)R in equation (11.6) and dividing both sides of
the expression by (1 + h) gives us

Ev'(w+a(l+h)R)R=0. (11.9)
We could proceed to differentiate this expression with respect to - and sign
the result, but there is a much easier way to see what happens to a as h

changes. Let a(h) be the demand for the risky asset as a function of h. I
claim that

a(0)
h
alh) = TR
The proof is simply to substitute this formula into the first-order condition

(11.9).

Intuitively, if the random variable scales up by 1 + h, the consumer just
reduces his holdings by 1/(1 + k) and restores exactly the same pattern
of returns that he had before the random variable shifted. This kind of
linear shift in the random variable can be perfectly offset by a change in
the consumer’s portfolio.

A more interesting shift in the random variable is a mean-preserving
spread that increases the variance of R but leaves the mean constant. One
way to parameterize such a change is to write R+ h(fi R). The expected
value of this random variable is R, but the variance is (1 + h)20%, so an
increase in h leaves the mean fixed but increases the variance.

We can also write this expression as (14 h)R — hR. This shows that this
sort of mean-preserving spread can be viewed as multiplying the random
variable by 1 + h and then subtracting off hR. According to our earlier
results, multiplying the random variable by 1 + h scales demand back by
1+ h, and subtracting wealth reduces demand even more, assuming that
absolute risk aversion is decreasing. Hence, a mean preserving spread of
this sort reduces investment in the risky asset more than proportionally.
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EXAMPLE: Asset pricing

Suppose now that there are many risky assets and one certain asset. Each
of the risky assets has a random total return R, for : = 1,...,n and the
safe asset has a total return Ry. (The total return, R, is one plus the rate of
return; in the last section we used R for the rate of return.) The consumer
initially has wealth w and chooses to invest a fraction of his wealth z, in
asset ¢ for ¢+ = 0,...,n. Thus, the wealth of the consumer in the second
period—when the random returns are realized—will be given by

W=wd zk. (11.10)

=0

We assume that the consumer wants to choose (x,) to maximize the ex-
pected utility of random wealth W.

The budget constraint for this problem is that Z?:o z, = 1. Since z, is
the fraction of the consumer’s wealth invested in asset 7z, then the sum of
the fractions over all the available assets must be 1. We can also write this

budget constraint as
n
o + Z T, =1,
=1

so that zop = 1 ~ > .- z,. Substituting this expression into (11.10) and
rearranging, we have

W=uw [:coRo + ZLE]
=1

w {(1 - Xn:xz)RO + ixzéz}
=1 2=1

w [Ro +Y_ z.(R, - Ro)
t=1

With this rearrangement of the budget constraint, we now have an un-
constrained maximization problem for zy,...,x,.

,max  Bu(w[Ro+ 3 z:(R. - Ro))-

Differentiating with respect to z, we have the first-order conditions

Ev'(W)(R, - Rg) =0,
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fori =1,...,n. Note that this is essentially the same expression as derived
in the preceding section.
This can also be written as

'Eu'(W)R; = RoEuw'(W).

Using the covariance identity for random variables, cov(X,Y) = EXY —
EX EY, we can transform this expression to

cov(v' (W), R;) + ER; Eu/(W) = RoEu' (W),
which can be rearranged to yield

- 1 S =
ER; =Ry B () cov(u' (W), R;). (11.11)

This equation says that the expected return on any asset can be written
as the sum of two components: the risk-free return plus the risk premium.
The risk premium depends on the covariance between the marginal utility
of wealth and the return of the asset. (Note that this is a different con-
cept of risk premium than that discussed in the proof of Pratt’s theorem.
Unfortunately, the same term is applied to both concepts.)

Consider an asset whose return is positively correlated with wealth. Since
risk aversion implies that the marginal utility of wealth decreases with
wealth, it follows that such an asset will be negatively correlated with
marginal utility. Hence, such an asset must have an expected return that
is higher than the risk-free rate, in order to compensate for its risk.

On the other hand, an asset that is negatively correlated with wealth
will have an expected return that is less than the risk-free rate. Intuitively,
an asset that is negatively correlated with wealth is an asset that is espe-
cially valuable for reducing risk, and therefore people are willing to sacrifice
expected returns in order to hold such an asset.

11.7 Relative risk aversion

Consider a consumer with wealth w and suppose that she is offered gambles
of the form: with probability p she will receive x percent of her current
wealth; with probability (1 — p) she will receive y percent of her current
wealth. If the consumer evaluates lotteries using expected utility, the utility
of this lottery will be

pu(zw) + (1 — p)u(yw).

Note that this multiplicative gamble has a different structure than the
additive gambles analyzed above. Nevertheless, relative gambles of this sort
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often arise in economic problems. For example, the return on investments
is usually stated relative to the level of investment.

Just as before we can ask when one consumer will accept more small
relative gambles than another at a given wealth level. Going through the
same sort of analysis used above, we find that the appropriate measure
turns out to be the Arrow-Pratt measure of relative risk aversion:
u”(w)w

w(w)

It is reasonable to ask how absolute and relative risk aversions might
vary with wealth. It is quite plausible to assume that absolute risk aversion
decreases with wealth: as you become more wealthy you would be willing
to accept more gambles expressed in absolute dollars. The behavior of
relative risk aversion is more problematic; as your wealth increases would
you be more or less willing to risk losing a specific fraction of it? Assuming
constant relative risk aversion is probably not too bad an assumption, at
least for small changes in wealth.

EXAMPLE: Mean-variance utility

In general the expected utility of a gamble depends on the entire proba-
bility distribution of the outcomes. However, in some circumstances the
expected utility of a gamble will only depend on certain summary statistics
of the distribution. The most common example of this is a mean-variance
utility function.

For example, suppose that the expected utility function is quadratic, so
that u(w) = w — bw?. Then expected utility is

Eu(w) = Ew ~ bEw? = W — bw? — bo?,.

Hence, the expected utility of a gamble is only a function of the mean and
variance of wealth.

Unfortunately, the quadratic utility function has some undesirable prop-
erties: it is a decreasing function of wealth in some ranges, and it exhibits
increasing absolute risk aversion.

A more useful case when mean-variance analysis is justified is the case
when wealth is Normally distributed. It is well-known that the mean and
variance completely characterize a Normal random variable; hence, choice
among Normally distributed random variables reduces to a comparison on
their means and variances.

One particular case that is of special interest is when the consumer has a
utility function of the form u(w) = —e~"". It can be shown that this util-
ity function exhibits constant absolute risk aversion. Furthermore, when
wealth is Normally distributed

Bu(w) = - [ 7 fluw) duw = —e~rTroL,
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(To do the integration, either complete the square or else note that this
is essentially the calculation that one does to find the moment generat-
ing function for the Normal distribution.) Note that expected utility is
increasing in W — ro2 /2. This means that we can take a monotonic trans-
formation of expected utility and evaluate distributions of wealth using the
utility function w(w,02) = W — §o2. This utility function has the conve-
nient property that it is linear in the mean and variance of wealth.

11.8 State dependent utility

In our original analysis of choice under uncertainty, the prizes were simply
abstract bundles of goods; later we specialized to lotteries with only mon-
etary outcomes. However, this is not as innocuous as it appears. After all,
the value of a dollar depends on the prevailing prices; a complete descrip-
tion of the outcome of a dollar gamble should include not only the amount
of money available in each outcome but also the prevailing prices in each
outcome.

More generally, the usefulness of a good often depends on the circum-
stances or state of nature in which it becomes available. An umbrella
when it is raining may appear very different to a consumer than an umbrella
when it is not raining. These examples show that in some choice problems
it is important to distinguish goods by the state of nature in which they
are available.

For example, suppose that there are two states of nature, hot and cold,
which we index by h and c¢. Let z; be the amount of ice cream deliv-
ered when it is hot and z. the amount delivered when it is cold. Then if
the probability of hot weather is p, we may write a particular lottery as
pu(h,zp) + (1 ~ p)u(e, z.). Here the bundle of goods that is delivered in
one state is “hot weather and x) units of ice cream,” and “cold weather
and z. units of ice cream” in the other state.

A more serious example involves health insurance. The value of a dollar
may well depend on one’s health—how much would a million dollars be
worth to you if you were in a coma? In this case we might well write
the utility function as u(h,my) where A is an indicator of health and m
is some amount of money. These are all examples of state-dependent
utility functions. This simply means that the preferences among the
goods under consideration depend on the state of nature under which they
become available.

11.9 Subjective probability theory

In the discussion of expected utility theory we have been rather vague about
the exact nature of the “probabilities” that enter the expected utility func-
tion. The most straightforward interpretation is that they are “objective”
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probabilities—such as probabilities calculated on the basis of some observed
frequencies. Unfortunately, most interesting choice problems involve sub-
jective probabilities: a given agent’s perception of the likelihood of some
event occurring.

In the case of expected utility theory, we asked what axioms about a
person’s choice behavior would imply the existence of an expected utility
function that would represent that behavior. Similarly, we can ask what
axioms about a person’s choice behavior can be used to infer the existence
of subjective probabilities; i.e., that the person’s choice behavior can be
viewed as if he were evaluating gambles according to their expected utility
with respect to some subjective probability measures.

As it happens, such sets of axioms exist and are reasonably plausible.
Subjective probabilities can be constructed in a way similar to the manner
with which the expected utility function was constructed. Recall that the
utility of some gamble z was chosen to be that number u(z) such that

z~u(z)obd (1—u(z))ow.

Suppose that we are trying to ascertain an individual’s subjective proba-
bility that it will rain on a certain date. Then we can ask at what probabil-
ity p will the individual be indifferent between the gamble pob& (1 —p)ow
and the gamble “Receive b if it rains and w otherwise.”

More formally, let E be some event, and let p(E) stand for the (subjec-
tive) probability that E will occur. We define the subjective probability
that F occurs by the number p(E) that satisfies

p(E)ob® (1 —p(E)) ow ~ receive b if E occurs and w otherwise.

It can be shown that under certain regularity assumptions the proba-
bilities defined in this way have all of the properties of ordinary objective
probabilities. In particular, they obey the usual rules for manipulation
of conditional probabilities. This has a number of useful implications for
economic behavior.

We will briefly explore one such implication. Suppose that p(H) is an
individual’s subjective probability that a particular hypothesis is true, and
that E is an event that is offered as evidence that H is true. How should a
rational economic agent adjust his probability belief about H in light of the
evidence E?7 That is, what is the probability of H being true, conditional
on observing the evidence E?

We can write the joint probability of observing E and H being true as

p(H,E) = p(H|E)p(E) = p(E|H)p(H).
Rearranging the right-hand sides of this equation,

p(E|H)p(H) _

p(H|E) = (B}
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This is a form of Bayes’ law which relates the prior probability p(H),
the probability that the hypothesis is true before observing the evidence,
to the posterior probability, the probability that the hypothesis is true
after observing the evidence.

Bayes’ law follows directly from simple manipulations of conditional
probabilities. If an individual’s behavior satisfies restrictions sufficient to
ensure the existence of subjective probabilities, those probabilities must
satisfy Bayes’ law. Bayes’ law is important since it shows how a rational
individual should update his probabilities in the light of evidence, and hence
serves as the basis for most models of rational learning behavior.

Thus, both the utility function and the subjective probabilities can be
constructed from observed choice behavior, as long as the observed choice
behavior follows certain intuitively plausible axioms. However, it should
be emphasized that although the axioms are intuitively plausible it does
not follow that they are accurate descriptions of how individuals actually
behave. That determination must be based on empirical evidence.

EXAMPLE: The Allais paradox and the Ellsberg paradox

Expected utility theory and subjective probability theory were motivated
by considerations of rationality. The axioms underlying expected utility
theory seem plausible, as does the construction that we used for subjective
probabilities.

Unfortunately, real-life individual behavior appears to systematically vi-
olate some of the axioms. Here we present two famous examples.

The Allais paradox

You are asked to choose between the following two gambles:

Gamble A. A 100 percent chance of receiving 1 million.

Gamble B. A 10 percent chance of 5 million, an 89 percent chance of 1
million, and a 1 percent chance of nothing.

Before you read any further pick one of these gambles, and write it down.
Now consider the following two gambles.

Gamble C. An 11 percent chance of 1 million, and an 89 percent chance
of nothing.

Gamble D. A 10 percent chance of 5 million, and a 90 percent chance of
nothing.
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Again, please pick one of these two gambles as your preferred choice and
write it down. '

Many people prefer A to B and D to C. However, these choices violate
the expected utility axioms! To see this, simply write the expected utility
relationship implied by 4 = B:

u(1) > .1u(5) + .89u(1) + .01u(0).
Rearranging this expression gives '
Jd1u(1) > .1u(5) + .014(0),
and adding .89u(0) to each side yields®
d1u(1) + .89u(0) > .1u(5) + .90u(0).

It follows that gamble C must be preferred to gamble D by an expected
utility maximizer.

The Ellsberg paradox

The Ellsberg paradox concerns subjective probability theory. You are told
that an urn contains 300 balls. One hundred of the balls are red and 200
are either blue or green.

Gamble A. You receive $1,000 if the ball is red.

Gamble B. You receive $1,000 if the ball is blue.

Write down which of these two gambles you prefer. Now consider the
following two gambles:

Gamble C. You receive $1,000 if the ball is not red.

Gamble D. You receive $1,000 if the ball is not blue.

It is common for people to strictly prefer A to B and C to D. But these
preferences violate standard subjective probability theory. To see why, let
R be the event that the ball is red, and —R be the event that the ball is not
red, and define B and —~B accordingly. By ordinary rules of probability,

p(R) =1-p(—R)

p(B) =1-p(=B). (11.12)



194 UNCERTAINTY (Ch. 11)

Normalize u(0) = 0 for convenience. Then if A is preferred to B, we
must have p(R)u(1000) > p(B)u(1000), from which it follows that

p(R) > p(B). - (11.13)

If C is preferred to D, we must have p(—R)u(1000) > p(—~B)u(1000), from
which it follows that
p(=R) > p(=B). (11.14)

However, it is clear that expressions (11.12), (11.13), and (11.14) are in-
consistent.

The Ellsberg paradox seems to be due to the fact that people think that
betting for or against R is “safer” than betting for or against “blue.”

Opinions differ about the importance of the Allais paradox and the Ells-
berg paradox. Some economists think that these anomalies require new
models to describe people’s behavior. Others think that these paradoxes
are akin to “optical illusions.” Even though people are poor at judging
distances under some circumstances doesn’t mean that we need to invent
a new concept of distance.

Notes -

The expected utility function is due to Neumann & Morgenstern (1944).
The treatment here follows Herstein & Milnor (1953). The measures of risk
aversion are due to Arrow (1970) and Pratt (1964). The treatment here
follows Yaari (1969). A description of recent work on generalizations of ex-
pected utility theory may be found in Machina (1982). Our brief treatment
of subjective probability is based on Anscombe & Aumann (1963).

Exercises

11.1. Show that the willingness-to-pay to avoid a small gamble with vari-
ance v is approximately r(w)v/2.

11.2. What will the form of the expected utility function be if risk aversion
is constant? What if relative risk aversion is constant?

11.3. For what form of expected utility function will the investment in a
risky asset be independent of wealth?

11.4. Consider the case of a quadratic expected utility function. Show that
at some level of wealth marginal utility is decreasing. More importantly,
show that absolute risk aversion is increasing at any level of wealth.
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11.5. A coin has probability p of landing heads. You are offered a bet in
which you will be paid $27 if the first head occurs on the jth flip.

(a) What is the expected value of this bet when p = 1/27

(b) Suppose that your expected utility function is u(z) = Inz. Express
the utility of this game to you as a sum.

(c) Evaluate the sum. (This requires knowledge of a few summation
formulas.)

(d) Let wg be the amount of money that would give you the same utility
you would have if you played this game. Solve for wy.

11.6. Esperanza has been an expected utility maximizer ever since she
was five years old. As a result of the strict education she received at an
obscure British boarding school, her utility function u is strictly increasing
and strictly concave. Now, at the age of thirty-something, Esperanza is
evaluating an asset with stochastic outcome R which is normally distributed
with mean u and variance o2. Thus, its density function is given by

fr) = ;%exp{—é (;“)}

(a) Show that Esperanza’s expected utility from R is a function of u
and o2 alone. Thus, show that E[u(R)] = ¢(u,0?).

(b) Show that ¢(-) is increasing in p.

(c) Show that ¢(-) is decreasing in o2.

11.7. Let R; and R, be the random returns on two assets. Assume that
R; and R, are independently and identically distributed. Show that an
expected utility maximizer will divide her wealth between both assets pro-
vided she is risk averse; and invest all her wealth in one of the assets if
she’s risk loving.

11.8. Suppose that a consumer faces two risks and only one of them is to
be eliminated. Let & = w; with probability p and w = w, with probability
1—p Let é=0if & = wy. If @ = wy, € = ¢ with probability 1/2 and
€ = —e with probability 1/2. Now, define a risk premium 7, for € to satisfy:

Elu(w — 7,)] = Elu(w + €)]. (%)
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(a) Show that if € is sufficiently small,
—%pu”(wl) 62
pu'(w1) + (1 = p)v'(wz)

[Hint: Take Taylor expansions of appropriate orders on both sides of (x)—
first-order on the left and second-order on the right.]

Ty R

(b) Let u(w) = —e** and v(w) = —e~*”. Compute the Arrow-Pratt
measure for u and v.

(c) Suppose that ¢ > b. Show that if p < 1 then there exists a value
w; — wg large enough to make m, > m,. What does this suggest about
the usefulness of the Arrow-Pratt measure for problems where risk is only
partially reduced?

11.9. A person has an expected utility function of the form u(w) = /w.
He initially has wealth of $4. He has a lottery ticket that will be worth
$12 with probability 1/2 and will be worth $0 with probability 1/2. What
is his expected utility? What is the lowest price p at which he would part
with the ticket?

11.10. A consumer has an expected utility function given by u(w) = lnw.
He is offered the opportunity to bet on the flip of a coin that has a proba-
bility 7 of coming up heads. If he bets $z, he will have w + z if head comes
up and w — z if tails comes up. Solve for the optimal z as a function of .
What is his optimal choice of z when m = 1/27

11.11. A consumer has an expected utility function of the form u(w) =
~1/w. He is offered a gamble which gives him a wealth of wy with prob-
ability p and w, with probability 1 — p. What wealth would he need now
to be just indifferent between keeping his current wealth or accepting this
gamble?

11.12. Consider an individual who is concerned about monetary payoffs in
the states of nature s = 1,...,S which may occur next period. Denote the
dollar payoff in state s by z, and the probability that state s will occur by
ps. The individual is assumed to choose x = (z1,...,Zg) so as to maximize
the discounted expected value of the payoff. The discount factor is denoted
by a; i.e., & = 1/(1 4+ r), where r is the discount rate. The set of feasible
payoffs is denoted by X, which we assume to be nonempty.

(a) Write down the individual’s maximization problem.

(b) Define v(p,a) to be the maximum discounted expected value that
the individual can achieve if the probabilities are p = (p1,...ps) and the
discount factor is @. Show that v(p, a) is homogeneous of degree 1 in a.
(Hint: Does v(p, ) look like something you have seen before?)
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(c) Show that v(p, @) is a convez function of p.

(d) Suppose that you can observe an arbitrarily large number of optimal
choices of x for various values of p and a. What properties must the set X
possess in order for it to be recoverable from the observed choice behavior?



CHAPTER 1 2

ECONOMETRICS

In the previous chapters we have examined various models of optimizing
behavior. Here we examine how one can use the theoretical insights devel-
oped in those chapters to help estimate relationships that may have been
generated by optimizing behavior.

Theoretical analysis and econometric analysis can interact in several
ways. First, theory can be used to derive hypotheses that can be tested
econometrically. Second, the theory can suggest ways to construct bet-
ter estimates of model parameters. Third, the theory helps to specify
the structural relationships in the model in a way that can lead to more
appropriate estimation. Finally, the theory helps to specify appropriate
functional forms to estimate.

12.1 The optimization hypothesis

We have seen that the model of optimizing choice imposes certain restric-
tions on observable behavior. These restrictions can be expressed in a
number of ways: 1) the algebraic relationships such as WAPM, WACM,
GARP, etc.; 2) the derivative relationships such as the conditions that
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certain substitution matrices must be symmetric and positive or negative
semidefinite; 3) the dual relationships such as the fact that profits must be
a convex function of prices.

The conditions implied by the maximization models are important for
at least two reasons. First, they allow us to test the model of maximizing
behavior. If the data don’t satisfy the restrictions implied by the particular
optimization model we are using, then we generally would not want to use
that model to describe the observed behavior.

Second, the conditions allow us to estimate the parameters of our model
more precisely. If we find that the theoretical restrictions imposed by op-
timization are not rejected in some particular data set, we may want to
re-estimate our model in a way that requires the estimates to satisfy the
restrictions implied by optimization.

Suppose, for example, we have an optimizing model that implies that
some parameter « equals zero. First, we might want to test this restriction,
and see if the estimated value of & is significantly different from zero. If the
parameter is not significantly different from zero, we may want to accept the
hypothesis that o = 0 and re-estimate the model imposing this hypothesis.
If the hypothesis is true, the second set of estimates of the other parameters
in the system will generally be more efficient estimates.

Of course, if the hypothesis is false, the re-estimation procedure will
not be appropriate. Our faith in the resulting estimates depends to some
degree on how much faith we place in the results of the initial test of the
optimization restrictions.

12.2 Nonparametric testing for maximizing behavior

If we are given a set of observations on firm choices, we can test the WAPM
and/or WACM inequalities described earlier directly. If we have data on
consumer choices, the conditions like GARP are only slightly more difficult
to check. These conditions give us a definitive answer as to whether the
data in question could have been generated by maximizing behavior.

These inequality conditions are easy to check; we simply see if the data
in question satisfy certain inequality relationships. If we observe a violation
of one of the inequalities, then we can reject the maximizing model. Sup-
pose, for example, that we have several observations on a firm’s choice of
net outputs at various price vectors: (pt,y!), for t =1,...,7. We may be
interested in the hypothesis that this firm is maximizing profits in a com-
petitive environment. We know that profit maximization implies WAPM:
p'y! > pty?® for all s and t. Testing WAPM simply involves checking to
see whether these T2 inequalities are satisfied.

In this framework a single observation where p’y? < ply?® is enough
to reject the profit-maximizing model. But perhaps this is too strong.
Presumably what we really care about is not whether a particular firm is
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ezactly maximizing profits, but rather whether its behavior is reasonably
well-described by the model of profit maximization. Typically, we want to
know not only whether the firm fails to maximize, but by how much the firm
fails to maximize. If it only fails to maximize by a small amount, we may
still be willing to accept the theory that the firm is “almost” maximizing
profits.

There is a very natural measure of the magnitude of the violation of
WAPM, namely the “residuals” R; = max,{pty® — p'y'}. The residual R;
measures how much more profit the firm could have had at observation ¢
if it had made a different choice. It provides a reasonable measurement of
the departure from profit-maximizing behavior. If the average value of R,
is small, then “almost” optimizing behavior may not be a bad model for
this firm’s behavior.

12.3 Parametric tests of maximizing behavior

The nonparametric tests described above are “exact” tests of optimization:
they are necessary and sufficient conditions for data to be consistent with
the optimization model. However, economists are often interested in the
question of whether a particular parametric form is a good approximation
to some underlying production function or utility function.

One way to answer this question is to use regression analysis, or more
elaborate statistical techniques, to estimate the parameters of a functional
form and see if we satisfy the restrictions imposed by the maximizing model.
For example, suppose that we observe prices and choices for & goods. The
Cobb-Douglas utility function implies that the demand for good i is a linear
function of income divided by price: x; = a;m/p; for i =1,...,k.

It is unlikely that observed demand data will be exactly linear in m/p;,
so we may want to allow for an error term to represent measurement error,
misspecification, left-out variables, and so on. Using ¢; for the error term
on the i*" equation, we have the regression model

Cima s e i=1,...,k (12.1)
T

It follows from the maximizing model that Zle a; = 1. We can estimate
the parameters of the model described by (12.1) and see if they satisfy this
restriction. If they do, this is some evidence in favor of the Cobb-Douglas
model; if the estimated parameters don’t satisfy this restriction, this is
evidence against the Cobb-Douglas parametric form.

If we use more elaborate functional forms, we get a more elaborate set
of testable restrictions. We know from our study of consumer behavior
that the fundamental observable restriction imposed by maximization is
that the matrix of substitution terms must be negative semidefinite. This
condition imposes a number of cross-equation restrictions that can be tested
by standard hypothesis testing procedures.
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12.4 Imposing optimization restrictions

If our statistical tests do not reject some particular parametric restrictions,
we may want to re-estimate the model imposing those restrictions on the
estimation procedure. To continue with our above example, the Cobb-
Douglas demand system described in (12.1) implies that Ele a; =1 We
may want to estimate the set of parameters (a;) imposing this restriction as
a maintained hypothesis. If the hypothesis is true, the resulting estimates
will generally be better that the unconstrained estimates.

The optimization model often imposes restrictions on the error term as
well as on the parameters. For example, another restriction imposed by the
theoretical model is that Zle piz;(p,m) = m. Generally, the observed

choices will satisfy the restriction Zle pix; = m by construction. If this
is so, equations (12.1) imply that

k k k
Zpﬂi =m= Zaim + ZPM.
i=1 =1 i=1

If we estimate our system subject to the constraint that Zle a; =1, we

also would want to impose the restriction Ele pie; = 0. That is, the &k
error terms must be orthogonal to the price vector.

12.5 Goodness-of-fit for optimizing models

The parametric tests briefly described in the last section describe how one
can statistically test the hypothesis that observed choices were generated by
maximization of some particular parametric form. These are “sharp” tests
in the sense that we either reject the hypothesis of maximization or not.
But in many cases it is often more appropriate to have a goodness-of-fit
measure: how close are the observed choices to maximizing choices?

In order to answer this question, we need a sensible definition of “close.”
In the nonparametric analysis of profit maximization, we saw that one
reasonable measure of this was how much additional profit the firm could
have acquired if it had behaved differently. This idea can be applied more
generally: one measure of goodness-of-fit is how far the economic agent
fails to optimize the postulated objective function.

This measure can be calculated directly in the case of firm behavior.
If our hypothesis is profit maximization or cost minimization, we simply
calculate the lost profits or excess costs by comparing the best-fitting opti-
mizing model to the actual choices. The application to utility maximization
is slightly more subtle.

Suppose that we are examining consumer choice behavior using a Cobb-
Douglas functional form. If the best fitting Cobb-Douglas utility function
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is described by the parameters (a;), say, we can compare the utility of the
optimal choices using the estimated utility function to the utility of the
actual choices.

The problem with this measure is that the units of the utility function
are arbitrary. What counts as “close” is not at all obvious. The solution
to this problem is to use a particular utility function for calculating the
goodness-of-fit measure. A natural choice here is the money metric util-
ity function described in Chapter 7, page 109. The money metric utility
function measures utility in units of money: how much money a consumer
would need at fixed prices to be as well off as he would be consuming a
bundle x.

Let’s see how to use this to construct a goodness-of-fit measure. Sup-
pose we observe some data (pt,x’) for ¢ = 1,...,T. We hypothesize that
the consumer is maximizing a utility function u(x, 3), where § is an un-
known parameter (or list of parameters). Given u(x, ) we know that we
can construct the money metric utility function m(p,x, 8) using standard
optimization techniques. .

We use the choice data to estimate the utility function u(x, 3) that best
describes the observed choice behavior. One way to see how well this utility
function “fits” is to calculate the ¢ “residuals”

)
_‘_—I’tT.

Here G! measures the minimal amount of money the consumer needs to
spend to get utility u(x?, B) compared to the amount of money the con-
sumer actually spent. This has a natural interpretation in terms of effi-
ciency: if the average value of Gt is G, then we can say that on the average
the consumer is G-percent efficient in his choice behavior. .

If the consumer is perfectly maximizing the utility function u(x, 3) then
G will equal 1—the consumer will be 100% efficient in his consumption
choice. If G is .95, then the consumer is 95% efficient, and so on.

12.6 Structural models and reduced form models

Suppose that we have a theory that suggests some relationships among a
number of variabies. Typically, there will be two types of variables in our
model, endogenous variables, whose values are determined by our model,
and exogenous variables, whose values are predetermined. For example,
in our model of profit-maximizing behavior, the prices and the technology
are exogenous variables, and the factor choices are endogenous variables.

Typically, a model can be expressed as a system of equations, each equa-
tion involving some relationships among the exogenous variables, the en-
dogenous variables, and the parameters. This system of equations is known
as a structural model.
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Consider, for example, a simple demand and supply system:

D=ay—a1p+azz; +¢
S =by+bip+brzz+ € (12.2)
D=S

Here D and S represent the (endogenous) demand and supply for some
good, p is its (endogenous) price, (a,) and (b,) are parameters, and 2;
and 2, are other exogenous variables that affect demand and supply. The
variables €; and e, are error terms. The system (12.2) is a structural
system.

We could solve the structural system in a way that expressed the en-
dogenous variable p as a function of the exogenous variables:

_ao—b0+ as o b2 2 +62—61
p a1 + by ay + b, ! a1 + b 2 a1+bl'

(12.3)

This is the reduced form of the system.

It is usually not too difficult to estimate the reduced form of a model.
In the demand-supply example. we would just estimate a regression of the
form

p =00+ Brz1 + Baza + €5.

The parameters (3,) are a function of the parameters (a,, b,), but in general
it will not be possible to recover unique estimates of the structural param-
eters (a,,b,) from the reduced-form parameters (8,). The reduced-form
parameters can be used to predict how the equilibrium price will change as
the exogenous variables change. This may be useful for some purposes.
But for other purposes it may be necessary to have estimates of the
structural parameters. For example, suppose that we wanted to predict how
the equilibrium price in this market would respond to the imposition of a
tax on the good. The structural model (12.2) suggests that the equilibrium
price received by suppliers, pg, should be a linear function of the tax:

ag — bo as » b2 bl ¢
= - Zp — .
3 a; + by ap + by ! a; + b 2 ay + b

(12.4)

If we had data describing many different choices of taxes and the resulting
supply prices. we could estimate the reduced form described by (12.4). But
if we don’t have such data, there is no way to estimate this reduced form.
In order to predict how the equilibrium price will respond to the tax, we
need to know the structural parameter by/(a; + b1). The reduced form
parameters in equation (12.3) just don’t provide enough information to
answer this question.

This suggests that we must consider methods for estimating structural
systems of equations such as (12.2). The simplest method would seem to be

i
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simply to estimate the demand equation and the supply equation separately
using standard ordinary least squares {OLS) regression techniques. Is this
likely to provide acceptable estimates of parameters?

We know from statistics that OLS estimates will have desirable properties
if certain assumptions are met. One particular assumption is that the right-
hand side variables in the regression should not be correlated with the error
term.

However, this is not the case in our problem. The variable p depends on
the error terms €; and €3, as can easily be seen in equation (12.3). It can
be shown that this dependence will generally result in biased estimates of
the parameters.

In order to estimate systems of structural equations, we generally need
to use more elaborate estimation techniques such as two-stage least squares
or various maximum likelihood techniques. Such methods can be shown to
have better statistical properties than OLS for estimation problems involv-
ing systems of equations.

In the simple demand-supply example described above, the theoretical
relationship among the variables implies that certain estimation techniques
are more appropriate than others. This will often be the case; part of the art
of econometrics involves using the theory to guide the choice of statistical
techniques. We will investigate this further in the context of an extended
example in the next section.

12.7 Estimating technological relationships

Suppose that we want to estimate the parameters of a simple Cobb-Douglas
production function. To be precise, suppose that we have a sample of farms
and we hypothesize that the output of corn on farm i, C;, depends on the
corn planted, K,, and the number of sunny days in the growing season,
S;. For the moment, we assume that these are the only two variables that
affect the output of corn.

We suppose that the production relation is given by a Cobb-Douglas
function C, = K¢ Sll_a. Taking logs, we can write the relationship between
output and inputs as

logC; = alog K; + (1 — a)log S;. (12.5)

Suppose that the farmers do not observe the number of sunny days when
they make their planting decision. Furthermore, the econometrician does
not have data on the number of sunny days at each location. Hence, the
econometrician regards (12.5) as a regression model of the form

log C; = alog K; + €, (12.6)

where ¢; is the “error term” (1 — a)log S;.
g
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Econometric theory tells us that OLS will give us good estimates of the
parameter q if log K; and ¢; are uncorrelated. If the farmers don’t observe
log S; = ¢, when they choose K, then their choices cannot be affected
by it. Hence, this is a reasonable assumption in this case, and OLS is an
appropriate estimation technique.

Let us now look at a case where OLS is not a good estimation technique.
Suppose now that the production relationship also depends on the quality
of land at each farm so that C; = Q;K2S. %, or

logC; =log Q; + alog K; + (1 — a) log S;.

As before, we assume that neither the econometrician nor the farmers ob-
serve S;. However, let us now suppose that the farmers observe @Q;, but
the econometrician doesn’t. Now is it likely that estimating the regression
(12.6) will give us good estimates of a?

The answer is no. Since each farmer observes @;, his choice of K; will
depend on @;. Hence, K; will be correlated with the error term, and biased
estimates are likely to result.

If we assume profit-maximizing behavior, we can be quite explicit about
how the farmers will use their information about K;. The (short-run) profit
maximization problem for farmer ¢ is

max p;@Q:;K{S; % — ¢ K,

where p; is the price of output and ¢; is the price of seed facing the it"
farmer. Taking the derivative with respect to K; and solving for the factor
demand function, we have

(3

It is clear that the farmer’s knowledge of Q7 directly affects his choice of
how much to plant, and thus how much output to produce.

Consider the scatter diagram of log K; and log C; in Figure 12.1. We
have also plotted the function log C; = alog K; +@Q, where Q is the average
quality.

It is clear from equation (12.7) that farmers with higher quality land will
want to plant more corn. This means that if we observe a farm with a large
input of K; it is likely to be a farm with large ;. Hence, the output of the
farm will be larger than the output of a farm with average quality land,
so that the data points for farms with larger K;’s will lie above the true
relationship for farms with average @s. Similarly, farms with small inputs
of K; are likely to be farms with smaller than average (Js.

The result is that a regression line fitted to such data will give us an
estimate for a that is larger than the true value of ¢. The underlying
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Scatter plot. This is a scatter plot of log K, and log C,. Note
that a farm with a large K, will generally be a farm with better
than average land, so its output will be larger than that of a farm
with average quality land. Hence, such points will lie above the
production relationship for a farm with the average quality of
land.

problem is that large values of output are not due entirely to large values
of inputs. There is a third omitted variable, land quality, that affects both
the level of output and the choice of input.

Bias of this sort is very common in econometric work: typically some
of the regression variables that influence some choice are themselves cho-
sen by the economic agents. Suppose, for example, that we want to esti-
mate the return to education. Generally people with higher income have
higher amounts of education, but education is not a predetermined variable:
people choose how much education to acquire. If people choose different
amounts of education, they are presumably different in other unobserved
ways. But these unobserved ways could also easily affect their income.

For example, suppose that people with higher 1Q’s would earn higher
wages, regardless of their education. But people with higher 1Q’s also find
it easier to acquire more education. This implies that people with higher
education would have higher wages for two reasons: first, because they
have higher IQ’s on the average, and, second, because they have more
education. A simple regression of wage on education would overstate the
effect of education on income.

Alternatively, one might postulate that people with wealthy parents tend
to have higher incomes. But wealthy parents can afford to purchase more
education, and also to contribute more wealth to their children. Again,
higher incomes will be associated with higher levels of education, but there
may be no direct causal link between the two variables.

Simple regression analysis is appropriate for controlled experiments, but



MORE COMPLEX TECHNOLOGIES 207

Simple regression analysis is appropriate for controlled experiments, but
often not adequate to deal with situations where the explanatory variables
are chosen by the agents. In such cases it is necessary to have a structural
model that expresses all relevant choices as a function of truly exogenous
variables.

12.8 Estimating factor demands

In the case of production relationships, it may be useful to estimate the
parameters of the production relationship indirectly. Consider for example
equation (12.7). Taking logs, we can write this as

1
—a

log Q, + log S,.

1 1 1
log K, = : loga—+—1 logp,—i—_-—&long+1

- a —a

An appropriate regression for this equation is

IOg K, = BO + ﬂl lngz + ,82 IOg q. + €,

where the constant term 3 is some function of a and the mean values of
log @, and log S,. Note that this specification implies that F2 = —f;.

Is this equation a likely candidate for OLS estimation? If the farmers
are facing competitive markets for the output and inputs, the answer is
yes, for in competitive markets the prices are outside of the control of the
farmers. If the prices are uncorrelated with the error term, then OLS is an
appropriate estimation technique.

Furthermore, the fact that 3; = —(; for an optimizing model gives us
a way to test optimization of a Cobb-Douglas production function. If we
find that 3, is significantly different from —3;, we may be inclined to reject
optimization. On the other hand, if we cannot reject the hypothesis that
B1 = —B2, we may be inclined to impose it as a maintained hypothesis and
estimate the model

log K, = o + B1 log(p./q.) + €.

In this case the demand function is a structural equation: it expresses
choices as a function of exogenous variables. The estimates of this equation
can be used to infer other properties of the technology.

12.9 More complex technologies
Consider the case where we have a production function relating output

to several inputs. For simplicity, consider the Cobb-Douglas production
function with two inputs: f(z1,z2) = Az$zs.
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We know from Chapter 4, page 54, that the factor demand functions
have the form

b

1 |awy |t 1

xl(wl,wz,y) :A a+b [.b_] ya+b
w1

_a [awg] ¥ 4
To(wi, we, y) = A7 ¥ | — Yo+t
b’UJ1
These demand functions have a linear-in-logarithm form, so we can write
the regression model

logz1 = fo1 + By log(wa/w1) + Buy + €1
log z3 = Bo2 + Br2 log(wy /w2) + Bazy + €2.

Here the parameters of the technology are functions of the regression co-
efficients. However, it is important to observe that the same parameters
a and b enter into the definitions of the coefficients. This means that the
parameters of the two equations are not unrestricted, but are related. For
example, it is easy to see that Gg; = Bgz. The system of equations should
be estimated taking account of the cross-equation restrictions.

Alternatively, we could combine the two equations to form the cost func-
tion, c(w, y):

— =5 aTh e _b_
=478 () () s

This also has a linear-in-logarithms form
log ¢ = log vp + 711 logwy + Yows + Y3y-

The cross-equation restrictions for the factor demand functions are conve-
niently incorporated into one equation for the cost function. Furthermore,
we know from our theoretical study of the cost function that it should be
an increasing, homogeneous, concave function. These restrictions can be
tested and imposed, if appropriate.

In fact, the cost function can be regarded as a reduced form of the system
of factor demand. Unlike the demand and supply example we studied
earlier, the cost function contains all of the relevant information about the
structural model. For we know from our study of the cost function that
the derivatives of the cost function give us the conditional factor demands.
Hence, estimating the parameters of the cost function automatically gives
us estimates of the parameters of the conditional factor demand functions.

However, it should be emphasized that this is only true under the main-
tained hypothesis of cost minimization. If the firms under examination
are indeed minimizing costs or maximizing profits, we can use a variety of
indirect techniques to estimate the technological parameters. These tech-
niques will generally be preferable to direct techniques, if the optimization
hypothesis is true.
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12.10 Choice of functional form

All of our examples above have used the Cobb-Douglas functional form.
This is for simplicity, not realism. In general, it is desirable to have a more
flexible parametric form to represent technological tradeoffs.

One can write down an arbitrary functional form as a production func-
tion, but then one has to calculate the implied factor demands and/or cost
function. It is much simpler to start with a parametric form for a cost
function directly; then it is a simple matter of differentiation to find the
appropriate factor demands.

We know from Chapter 6 that any monotonic, homogeneous, concave
function of prices is a cost function for some well-behaved technology.
Hence, all that is necessary is to find a functional form with the required
properties.

In general we want to choose a parametric form for which some values of
the parameters satisfy the restrictions imposed by optimization and some
values don’t. Then we can estimate the parameters and test the hypothesis
that the estimated parameters satisfy the relevant restrictions imposed by
the theory. We describe a few examples below.

EXAMPLE: The Diewert cost function

The Diewert cost function takes the form

k k
WY) =y YD b /Wiy

i=1 j=1

For this functional form, we require that b;; = bj;. Note that we can also
write this form as

W y) anwz +Zzbum

i#£] j#L

Since the first part of this expression has the form of a Leontief cost func-
tion, this form is also known as a generalized Leontief cost function.
The factor demands have the form

k
T (w,y) = Z/Z bz‘j\/ w;/w;.
j=1

These demands are linear in the b;; parameters. If b;; > 0 and some b;; > 0,
it is easy to verify that this form satisfies the necessary conditions to be a
cost function.
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The b;; parameters can be related to the elasticities of substitution be-
tween the various factors; the larger the b;; term, the greater the elasticity
of substitution between factors 7 and j. The functional form imposes no
restrictions on the various elasticities; the Diewert function can serve as a
local second-order approximation to an arbitrary cost function.

EXAMPLE: The translog cost function

The translog cost function takes the form

k k&
1
loge(w,y) = ap + E a; logw; + 2 E E b;; log w; logw; + log y.

i—1 i=1 j=1

For this function, we require that

k
Zai =1
=1

bij = bji

> b =0.
i=1

Under these restrictions, the translog cost function is homogeneous in
prices. If a; > 0 and b;; = 0 for all ¢ and j, the cost function becomes
a Cobb-Douglas function.

The conditional factor demands are not linear in the parameters, but
the factor shares s;(w,y) = w;x;(w,y)/c(w,y) are linear in parameters
and are given by

bl

k

Si(W,y) =a; + Zbij Inw;.
j=1

12.11 Estimating consumer demands

Our earlier examples have focused on estimating production relationships.
These have the convenient feature that the objective function—profit or
cost—is observable. In the case of the consumer demand behavior, the
objective function is not directly observed. This makes things a bit more
complicated conceptually, but doesn’t create as many difficulties as one
might expect.

Suppose that we are given data (pf,x!) for t = 1,...,T and want to
estimate some parametric demand function. We first investigate the case
where we are interested in the demand for a single good, then the many-
good case.
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Demand functions for a single good

It is important to understand that even when we are only interested in the
demand for a single good, there are still two goods involved: the good in
which we are interested and “all other goods.” We generally model this by
thinking of the choice problem as a choice between the good in question
and money to be spent on all other goods. See the discussion of Hicksian
separability in Chapter 9, page 148.

Suppose that we use = to denote the amount purchased of the good in
question and y to denote money to be spent on all other goods. If p is the
price of the x-good, and q the price of the y-good, the utility maximization
problem becomes ‘

max u(z,y)
z,y

such that pz 4+ qy = m.

We denote the demand function by z(p, g, m). Since the demand function
is homogeneous of degree zero, we can normalize by g, so that demand
becomes a function of the relative price of x and real income: z(p/q,m/q).
In practice, p is the nominal price of the good in which we are interested
and q is usually taken to be some consumer price index. The demand spec-
ification then says that the observed quantity demanded is some function
of the “real price,” p/q, and “real income,” m/q.

One convenient feature of the two-good problem is that virtually any
functional form is consistent with utility maximization. We know from
Chapter 8, page 127, that the integrability equations in the two-good case
can be expressed as a single ordinary differential equation. Thus, there will
always be an indirect utility function that will generate a single demand
equation via Roy’s law. Essentially the only requirement imposed by max-
imization in the two-good case is that the compensated own price effect
should be negative.

This means that one has great freedom in choosing functional forms
consistent with optimization. Three common forms are

1) linear demand: = = a + bp + cm.
2) logarithmic demand: Inz =Ina +blnp + clnm.
3) semi-logarithmic demand: Inx = a + bp + cm.

Each of these equations is associated with an indirect utility function.
We derived indirect utility functions for logarithmic demand in Chapter 26,
page 484, while the linear and semi-log cases were given as exercises. Es-
timating the parameters of the demand functions automatically gives us
estimates of the parameters of the indirect utility function.
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Once we have the indirect utility function we can use it to make a variety
of predictions. For example, we can use the estimates to calculate the
compensating or equivalent variation associated with some price change.
For details, see Chapter 10, page 161.

Multiple equations

Suppose that we want to estimate a system of demands for more than two
goods. In this case we could start with a functional form for the demand
equations and then try to integrate them to find a utility function. However,
it is generally much easier to specify a functional form for utility or indirect
utility and then differentiate to find the demand functions.

EXAMPLE: Linear expenditure system

Suppose that the utility function takes the form

k
u(x) = Z a; In(z; — ),
i=1

where z; > «y;. The utility maximization problem is

k
n}barx Z a;In(z; — ;)

i=1

k
such that Z piT; = m.

i=1

If we let 2; = z; — -y;, we see that we can write the utility maximization
problem as

mz?x Zai Inz;
i=1
k k
such that Ep,-zi =m — me-

i=1 =1

k
i=

This is a Cobb-Douglas maximization problem in z;. The demand func-
tions for z; can then easily be seen to have the form

m— Zf:l DiYi

pi

=Y ta
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EXAMPLE: Almost Ideal Demand System
The Almost Ideal Demand System (AIDS) has an expenditure function

of the form
e(p,u) = a(p) + b(p)u, (12.8)
where 1
ofp) = aa-+ Y alogpi + 3 303 7 log o
i i j
b(p) = fo [ [ piB:.

Since e(p, u) must be homogeneous in p, the parameters must satisfy

k
Za,‘ =1
i=1]

k k k
D=2 0= Ai=0
i=1 =1 i=1

The demand functions can be derived by differentiating equation (12.8).
However, it is usually more convenient to estimate the expenditure shares

k
m
8 = oy + Zlm-j logp; + G log P (12.9)
i=
where P is a price index given by
k 1 EL K
log P =g+ Y _logpi + 3 3> i logp; log p;,
=1 i=1 j=1

and 1
i = 5 (Vi + Vi)

The AIDS system is close to being linear, except for the price index
term. In practice, econometricians typically use an arbitrary price index
to calculate the m/P terms, and then estimate the rest of the parameters
of the system using equation (12.9).

12.12 Summary

We have seen that the theoretical analysis of optimizing models can help
to guide econometric investigations in several ways. First, it can provide
ways to test the theories, in either a nonparametric or a parametric form.
Secondly, the theory can suggest restrictions that can be used to construct
more efficient estimates. Third, the theory can specify structural relation-
ships in the models and guide the choice of estimation techniques. Finally,
the theory can guide the choice of functional forms.
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Notes

See Deaton & Muelbauer (1980) for a textbook discussion of applying con-
sumer theory to estimation of demand systems. Varian (1990) discusses
goodness-of-fit in more detail and gives some empirical examples.



CHAPTER 1 3

COMPETITIVE
MARKETS

Up until now we have studied maximizing behavior of individual economic
agents: firms and consumers. We have taken the economic environment
as given, completely summarized by the vector of market prices. In this
chapter we begin our study of how the market prices are determined by
the actions of the individual agents. We start with the simplest model: a
single competitive market.

13.1 The competitive firm

A competitive firm is one that takes the market price of output as being
given and outside of its control. In a competitive market each firm takes
the price as being independent of its own actions, although it is the actions
of all firms taken together that determine the market price.

Let p be the market pricee. Then the demand curve facing an ideal
competitive firm takes the form

0 ifp>7p

D(p) = {any amount ifp=7p
00 if p<p.
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A competitive firm is free to set whatever price it wants and produce
whatever quantity it is able to produce. However, if a firm is in a compet-
itive market, and it sets a price above the prevailing market price, no one
will purchase its product. If it sets its price below the market price, it will
have as many customers as it wants; but it will needlessly forego profits,
since it can also get as many customers as it wants by pricing at the market
price. This is sometimes expressed by saying that a competitive firm faces
an infinitely elastic demand curve.

If a competitive firm wants to sell any output at all, it must sell it at the
market price. Of course, real world markets seldom achieve this ideal. The
question is not whether any particular market is perfectly competitive—
almost no market is. The appropriate question is to what degree models of
perfect competition can generate insights about real-world markets. Just
as frictionless models in physics can describe some important phenomena in
the physical world, the frictionless model of perfect competition generates
useful insights in the economic world.

13.2 The profit maximization problem

Since the competitive firm must take the market price as given, its profit
maximization problem is very simple. It must choose output y so as to
solve

max py — c(y).
The first-order and second-order conditions for an interior solution are

p=c(y")
c"(y*) > 0.

We will typically assume that the second-order condition is satisfied as a
strict inequality. This is not really necessary, but it makes some of the
calculations simpler. We refer to this as the regular case.

The inverse supply function, denoted by p(y), measures the price
that must prevail in order for a firm to find it profitable to supply a given
amount of output. According to the first-order condition, the inverse supply
function is given by

p(y) = (y),

as long as ¢”'(y) > 0.

The supply function gives the profit-maximizing output at each price.
Therefore the supply function, y(p), must identically satisfy the first-order
condition

p = (y(p)), (13.1)

and the second-order condition

"(y(p)) 2 0.
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COST/ OQUTPUT MC

OUTPUT

Supply function and cost curves. In well-behaved cases, the
supply function of a competitive firm is the upward sloping part
of the marginal cost curve that lies above the average variable
cost curve.

The direct supply curve and the inverse supply curve measure the same
relationship—the relationship between price and the profit-maximizing sup-
ply of output. The two functions simply describe the relationship in differ-
ent ways.

How does the supply of a competitive firm respond to a change in the
price of output? We differentiate expression (13.1) with respect to p to find

L=c"(y(p)y' (p).

Since normally ¢”(y) > 0, it follows that y'(p) > 0. Hence, the supply curve
of a competitive firm has a positive slope, at least in the regular case. We
derived this same result earlier in Chapter 2 using different methods.

We have focused on the interior solution to the profit maximization prob-
lem, but it is of interest to ask when the interior solution will be chosen.
Let us write the cost function as ¢(y) = c,(y) + F, so that total costs
are expressed as the sum of variable costs and fixed costs. We interpret
the fixed costs as being truly fixed—they must be paid even if output is
zero. In this case, the firm will find it profitable to produce a positive level
of output when the profits from doing so exceed the profits (losses) from
producing zero:

py(p) — c(y(p)) — F > —F.

Rearranging this condition, we find that the firm will produce positive
levels of output when
¢ (y(p))

y(p)

that is, when price is greater than average variable cost. See Figure 13.1
for a picture.

p2

y

Figure
13.1
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13.3 The industry supply function

The industry supply function is simply the sum of the individual firm
supply functions. If y;(p) is the supply function of the i*" firm in an industry
with m firms, the industry supply function is given by

Y(p) =Y ulp).
=1

The inverse supply function for the industry is just the inverse of this
function: it gives the minimum price at which the industry is willing to
supply a given amount of output. Since each firm chooses a level of out-
put where price equals marginal cost, each firm that produces a positive
amount of output must have the same marginal cost. The industry sup-
ply function measures the relationship between industry output and the
common marginal cost of producing this output.

EXAMPLE: Different cost functions

Consider a competitive industry with two firms, one with cost function
c1(y) = y?, and other with cost function cy(y) = 2y?. The supply functions
are given by

y1=p/2

Y2 = p/4.

The industry supply curve is therefore Y(p) = 3p/4. For any level of
industry output Y, the marginal cost of production in each firm is 4Y/3.

EXAMPLE: Identical cost functions

Suppose that there are m firms that have the common cost function c(y) =
y? + 1. The marginal cost function is simply MC(y) = 2y, and the average
variable cost function is AVC(y) = y. Since in this example the marginal
costs are always greater than the average variable costs, the inverse supply
function of the firm is given by p = MC(y) = 2y.

It follows that the supply function of the firm is y(p) = p/2 and the
industry supply function is Y'(p,m) = mp/2. The inverse industry supply
function is therefore p = 2Y/m. Note that the slope of the inverse supply
function is smaller the larger the number of firms.
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13.4 Market equilibrium

The industry supply function measures the total output supplied at any
price. The industry demand function measures the total output de-
manded at any price. An equilibrium price is a price where the amount
demanded equals the amount supplied.

Why does such a price deserve to be called an equilibrium? The usual
argument is that at any price at which demand does not equal supply,
some economic agent would find it in its interest to unilaterally change
its behavior. For example, consider a price in which the amount supplied
exceeds the amount demanded. In this case some firms will not be able
to sell all of the output that they produced. By cutting production these
firms can save production costs and not lose any revenue, thereby increasing
profits. Hence such a price cannot be an equilibrium.

If we let z,(p) be the demand function of individual ¢ for i = 1,...,n and
y;{p) be the supply function of firm j for j = 1,...,m, then an equilibrium
price is simply a solution to the equation

S z(p) =D v, (p).
=1 1=1

EXAMPLE: ldentical firms

Suppose that the industry demand curve is linear, X (p) = a — bp, and the
industry supply curve is that derived in the last example, Y (p,m) = mp/2.
The equilibrium price is the solution to

a—-bp= mp/z’
which implies
. a
p= b+m/2

Note that in this example the equilibrium price decreases as the number of
firms increases.
For an arbitrary industry demand curve, equilibrium is determined by

X(p) = my(p).
How does the equilibrium price change as m changes? We regard p as an
implicit function of m and differentiate to find
X'(p)p'(m) = my'(p)p'(m) + y(p),
which implies
' y(p)
p(m)= o=——"—.
X'(p) — my'(p)

Assuming that industry demand has a negative slope, the equilibrium price
must decline as the number of firms increases.
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13.5 Entry

The previous section described the computation of the industry supply
curve when there was an exogenously given number of firms. However,
in the long run, the number of firms in an industry is variable. If a firm
expects that it can make a profit by producing a particular good, we might
expect that it would decide to do so. Similarly, if an existing firm in an
industry found itself persistently losing money, we might expect that it
would exit the industry.

Several models of entry and exit are possible, depending on what sort
of assumptions one makes about entry and exit costs, the foresight that
potential entrants possess and so on. In this section we will describe a
particularly simple model involving zero entry and exit costs and perfect
foresight.

Suppose that we have an arbitrarily large number of firms with identical
cost functions given by c¢(y). We can calculate the break-even price p*
where profits are zero at the optimal supply of output. This is simply the
level of output where average cost equals marginal cost.

Now we can plot the industry supply curves if there are 1,2,... firms
in the industry and look for the largest number of firms so that the firms
can break even. This is shown in Figure 13.2. If the equilibrium number
of firms is large, then the relevant supply function will be very flat, and
the equilibrium price will be close to p*. Hence, it is often assumed that
the supply curve of a competitive industry with free entry is essentially a
horizontal line at a price equal to the minimum average cost.

PRICE 1
2 3
4
/ 5
o
Demand

OUTPUT

Equilibrium number of firms. In our model of entry, the
equilibrium number of firms is the largest number of firms that
can break even. If this number is reasonably large, the equilib-
rium price must be close to minimum average cost.
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In this model of entry, the equilibrium price can be larger than the break-
even price. Even though the firms in the industry are making positive
profits, entry is inhibited since potential entrants correctly foresee that
their entry would result in negative profits.

As usual, positive profits can be regarded as economic rent. In this
case, we can view the profits as being the “rent to being first.” That is,
investors would be willing to pay up to the present value of the stream
of profits earned by an incumbent firm in order to acquire that stream of
profits. This rent can be counted as an (opportunity) cost of remaining
in the industry. If this accounting convention is followed, firms earn zero
profits in equilibrium.

EXAMPLE: Entry and long-run equilibrium

1f c(y) = y? + 1, then the breakeven level of output can be found by setting
average cost equal to marginal cost:

y+1/y =2y,

which implies that ¥ = 1. At this level of output, marginal cost is given by
2, so this is the breakeven price. According to our entry model, firms will
enter the industry as long as they determine that they will not drive the
equilibrium price below 2.

Suppose that demand is linear, as in the previous example. Then the
equilibrium price will be the smallest p* that satisfies the conditions

_ a
T b+m/2
p* =2 ‘

X

p

As m increases, the equilibrium price must get closer and closer to 2.

13.6 Welfare economics

We have seen how to calculate the competitive equilibrium: the price at
which supply equals demand. In this section we investigate the welfare
properties of this equilibrium. There are several approaches to this issue,
and the one we pursue here, the representative consumer approach, is
probably the simplest. Later on, in our discussion of general equilibrium
theory, we will describe a different and more general approach.

Let us suppose that the market demand curve, z(p), is generated by
maximizing the utility of a single representative consumer who has a utility
function of the form u(z) + y. The x-good is the good under examination
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in this particular market. The y-good is a proxy for “everything else.”
The most convenient way to think of the y-good is as money left over for
purchasing other goods after the consumer makes the optimal expenditure
on the x-good.

We have seen in Chapter 10 that this sort of utility function yields an
inverse demand curve of the form

p=u'(z).

The direct demand function, z(p), is simply the inverse of this function, so
it satisfies the first-order condition

u'(z(p)) = p.

Note the special feature: in the case of quasilinear utility the demand
function is independent of income. This feature makes for especially simple
equilibrium and welfare analysis.

As long as we’ve assumed a representative consumer we may as well as-
sume a representative firm, and let it have cost function ¢(z). We interpret
this as saying that the production of z units of output requires ¢(z) units
of the y-good, and make the assumption that ¢(0) = 0. We also assume
that ¢”(-) > 0 so that the first-order conditions uniquely determine the
profit-maximizing supply of the representative firm.!

The profit-maximizing (inverse) supply function of the representative
firm is given by p = ¢/(z). Hence, the equilibrium level of output of the
x-good is simply the solution to the equation

() = d(z). (13.2)

This is the level of output at which the marginal willingness-to-pay for the
x-good just equals its marginal cost of production.

13.7 Welfare analysis

Suppose that instead of using the market mechanism to determine output,
we simply determined directly the amount of output that maximized the
representative consumer’s utility. This problem can be stated as

max u(x) +y
2y
such that y = w — ¢(z).

1 Of course, competitive behavior is very unreasonable if there is literally a single firm;
it is better to think of this as just the “average” or “representative” behavior of the
firms in a competitive industry.
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Direct utility. The equilibrium quantity maximizes the ver-
tical area between the demand and the supply curve.

Here w is the consumer’s initial endowment of the y-good.
Substituting from the constraint, we rewrite this problem as o

max w(z) + w — c(z).

The first-order condition is
Y (z) = (z), (13.3)

and the second-order condition is automatically satisfied by our earlier
curvature assumptions. Note that equations (13.2) and (13.3) determine
the same level of output: in this instance the competitive market results in
exactly the same level of production and consumption as does maximizing
utility directly.

The welfare maximization problem is simply to maximize total utility:
the utility of consuming the x-good plus the utility from consuming the y-
good. Since z units of the x-good means giving up ¢(z) units of the y-good,
our social objective function is u(z) + w — ¢(z). The initial endowment w
is just a constant, so we may as well take our social objective function to
be u(z) — ¢(z).

We have seen that u(r) is simply the area under the (inverse) demand
curve up to z. Similarly, ¢(x) is simply the area under the marginal cost
curve up to  since

c(x) — ¢(0) = /Om d(z)dz

and we are assuming that ¢(0) = 0.

Hence, choosing = to maximize utility minus costs is equivalent to choos-
ing = to maximize the area under the demand curve and above the supply
curve, as in Figure 13.3.
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Here’s another way to look at the same calculation. Let CS(z) =
u(z) — pz be the consumer’s surplus associated with a given level of
output: this measures the difference between the “total benefits” from the
consumption of the x-good and the expenditure on the x-good. Similarly,
let PS(z) = pz — ¢(z) be the profits, or the producer’s surplus earned
by the representative firm.

Then the maximization of total surplus entails

max CS(z) + PS(z) = [u(z) — pz] + [pz — ¢(z)],

" max u(z) — c(z).

Hence, we can also say that the competitive equilibrium level of output
maximizes total surplus.

13.8 Several consumers

The analysis of the last section only dealt with a single consumer and a
single firm. However, it is easily extended to multiple consumers and firms.
Suppose that therearei = 1,...,n consumers and j = 1,...,m firms. Each
consumer 4 has a quasilinear utility function u;(z;) +¥; and each firm j has
a cost function c;(z;).

An allocation in this context will describe how much each consumer
consumes of the x-good and the y-good, (z;,1;), for i = 1,...,n and how
much each firm produces of the x-good, z;, for j = 1,...,m. Since we know
the cost function of each firm, the amount of the y-good used by each firm
Jj is simply c;(2;). The initial endowment of each consumer is taken to
be some given amount of the y-good, w;, and 0 of the x-good.

A reasonable candidate for a welfare maximum in this case is an alloca-
tion that maximizes the sum of utilities, subject to the constraint that the
amount produced be feasible. The sum of utilities is

n m
2 uile) + 3w
i=1 i=1

The total amount of the y-good is the sum of the initial endowments, minus
the amount used up in production:

n n m
Yowi=d wi— Y ci(z).
i=1 i=1 j=1

Substituting this into the objective function and recognizing the feasibility
constraint that the total amount of the x-good produced must equal the
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total amount consumed, we have the maximization problem

n n m
max ) ui(@) + ) wi — Y ¢i(2)
Tk i=1 j=1

1=1

n m
such that Z T = Z zj.

=1 j=1

Letting A be the Lagrange multiplier on the constraint, the answer to this
maximization problem must satisfy

ui(z]) = A

&) =,

along with the feasibility constraint.

But note that these are precisely the conditions that must be satisfied
by an equilibrium price p* = A. Such an equilibrium price makes marginal
utility equal to marginal cost and simultaneously makes demand equal to
supply. Hence, the market equilibrium necessarily maximizes welfare, at
least as measured by the sum of the utilities.

Of course, this says nothing at all about the distribution of total utility,
since that will depend on the pattern of initial endowments, (w;). In the
case of quasilinear utility, the equilibrium price doesn’t depend on the dis-
tribution of wealth, and any distribution of initial endowments is consistent
with the equilibrium conditions given above.

13.9 Pareto efficiency

We have just seen that a competitive equilibrium maximizes the sum of
utilities, at least in the case of quasilinear utilities. But it is far from
obvious that the sum of utilities is a sensible objective function, even in
this restricted case.

A more general objective is the idea of Pareto efficiency. A Pareto
efficient allocation is one for which there is no way to make all agents
better off. Said another way, a Pareto efficient allocation is one for which
each agent is as well off as possible, given the utilities of the other agents.

Let us examine the conditions for Pareto efficiency in the case of quasi-
linear utility functions. For simplicity, we limit ourselves to the situation
where there is some fixed amount of the two goods, (T, %), and there are
only two individuals. In this case, a Pareto efficient allocation is one that
maximizes the utility of agent 1, say, while holding agent 2 fixed at some
given level of utility @.

max uy (1) +y1
Z1,Y1

such that u(ZT — 1)+ 7 —y1 =7%.
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Substituting from the constraint into the objective function, we have the
unconstrained maximization problem

max ur(x1) + u2(T — 21) + ¥ — U,
1

which has the first-order condition
uy(z1) = uy(2). (13.4)

For any given value of x;, this condition will uniquely determine an
efficient level of ;. However, the distribution of y; and y, is arbitrary.
Transferring the y-good back and forth between the two consumers makes
one better off and the other worse off, but doesn’t affect the marginal
conditions for efficiency at all.

Finally, consider the relationship between (13.4) and the competitive
equilibrium. At an equilibrium price p*, each consumer adjusts his con-
sumption of the x-good so that

uy (27) = up(a3) = p*.
Hence, the necessary condition for Pareto efficiency is satisfied. Further-
more, any allocation that is Pareto efficient must satisfy (13.4), which essen-
tially determines a price p* at which this Pareto efficient allocation would
be supported as a competitive equilibrium.

As it happens, essentially the same results hold in general, even if the
utility functions are not quasilinear. However, in general the equilibrium
prices will depend on the distribution of the y-good. We will investigate
this sort of dependency further in the chapter on general equilibrium.

13.10 Efficiency and welfare

On first encounter it seems peculiar that we get the same answer when we
maximize a sum of utilities as when we solve the Pareto efficiency problem.
Let’s explore this a bit more. For simplicity we stick with two consumers
and two goods, but everything generalizes to more consumers and goods.
Suppose that there is some initial amount of the x-good, Z, and some
initial amount of the y-good, §. An efficient allocation maximizes one
person’s utility given a constraint on the other person’s utility level:

max u1(z1) + 11
FIRA

(13.5)
such that w2 (T — 1) +§ — y1 = To.
An allocation that maximizes the sum of utilities solves
max w{z1)tu(ZT—~z1)+1i+7—- - (136)

Z1,Y1
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We have already observed that the same z] solves both of these problems.
However, the y-good that solves these two problems is different. Any pair
(y1, y2) maximizes the sum of utilities, but there will only be one value of
y; that satisfies the utility constraint in (13.5). The solution to (13.5) is
just one of the many solutions to (13.6).

The special structure of quasilinear utility implies that all Pareto efficient
allocations can be found by solving (13.6): all Pareto efficient allocations
have the same value of (z},x3) but they differ in (y7, y3). This is why we
(apparently) got the same answer by maximizing the sum of utilities as by
determining a Pareto efficient allocation directly.?

v

13.11 The discrete good model

The discrete good model is another useful special case for examination of
market behavior. In this model, there are again two goods, an x-good and
a y-good, but the x-good can only be consumed in discrete amounts. In
particular, we suppose that the consumer always purchases either one or
zero units of the x-good.

Thus the utility achieved by a consumer with income m facing a price
of p if she purchases the good is given by u(1, m — p); if she chooses not
to purchase the good she gets utility u(0,m). The reservation price is that
price r that just makes the consumer indifferent between purchasing the
x-good or not. That is, it is the price r that satisfies the equation

u(l,m —r) = u(0,m).

The demand curve for a single consumer looks like that depicted in Fig-
ure 13.4A; the aggregate demand curve for many consumers with different
reservation prices has the staircase shape depicted in Figure 13.4B.

The case with quasilinear preferences and a discrete good is especially
simple. In this case the utility if the consumer purchases the good is simply
u(1) + m — p and her utility if she doesn’t is u(0) + m. The reservation
price r is the solution to

u(l)+m—r =u(0) +m,

which is easily seen to be r = u(1) — u(0). Using the convenient normal-
ization that u(0) = 0, we see that the reservation price is simply equal to
the utility of consumption of the x-good.

If the price of the x-good is p, then a consumer who chooses to consume
the good has a utility of u(1) + m —p = m + r ~ p. Hence, the consumer’s

2 There is one caveat to these claims: they require that we have an interior solution in
(y1,y2). If consumer 2’s target utility level is so low that it can only be achieved by
setting y2 = 0, then the equivalence between the two problems breaks down.
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PRICE PRICE

1 QUANTITY QUANTITY
A B
Reservation price. Panel A depicts the demand curve for a
single consumer. Panel B depicts the aggregate demand curve
for many consumers with different reservation prices.

surplus r—p is simply a way of measuring the utility achieved by a consumer
facing price p.

This special structure makes equilibrium and welfare analysis very sim-
ple. The market equilibrium price simply measures the reservation price of
the marginal consumer—the consumer who is just indifferent between
purchasing and not purchasing the good. The marginal consumer gets
(approximately) zero consumer’s surplus; the inframarginal consumers
typically get positive consumer’s surplus.

13.12 Taxes and subsidies

We have seen that the term comparative statics refers to the analysis of
how an economic outcome varies as the economic environment changes. In
the context of competitive markets, we generally ask how the equilibrium
price and/or quantity changes as some policy variable changes. Taxes and
subsidies are a convenient example.

The important thing to remember about a tax is that there are always
two prices in the system, the demand price and the supply price. The
demand price, py, is the price paid by the demanders of a good, and the
supply price, ps, is the price received by the suppliers of the good; they
differ by the amount of the tax or subsidy.

For example, a quantity tax is a tax levied on the amount of a good
consumed. This means that the price paid by the demanders is greater
than the price received by the suppliers by the amount of the tax:

Pd = ps + L.

A value tax is a tax levied on the expenditure of a good. It is usually
expressed as a percentage amount, such as a 10 percent sales tax. A value
tax at rate T leads to a specification of the form

pa = (14 7)ps.
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Subsidies have a similar structure; a quantity subsidy of amount s means
that the seller receives s dollars more per unit than the buyer pays, so that
DPd =DPs — 8.

The demander’s behavior depends on the price she faces and the sup-
plier’s behavior depends on the price that she faces. Hence we write D(pg)
and S(p;). The typical equilibrium condition is that demand equals supply;
this leads to the two equations:

D(pa) = S(ps)
Pd =DPs + 1.

Inserting the second equation into the first, we can solve either

D(ps + t) = S(Ps),

or

D(pa) = S(pa — t).

Obviously, the solution for py and p; is independent of which equation we
solve.

Another way to solve this kind of tax problem is to use the inverse
demand and supply functions. In this case the equations become

Pi(q) = Ps(q) + 1,

or
Ps(q) = Pa(q) — t.

Once we have solved for the equilibrium prices and quantity, it is reason-
ably straightforward to do the welfare analysis. The utility of consumption
accruing to the consumer at the equilibrium z* is u(z*) — pgz*. The profits
accruing to the firm are pyx* — c{z*). Finally, the revenues accruing to the
government are tx* = (pg — ps)z*. The simplest case is where the prof-
its from the firm and the tax revenues both accrue to the representative

consumer, yielding a net welfare of
W(z*) = u(z”) — c(z*).

This is simply the area below the demand curve minus the area below the
marginal cost curve, and is depicted in Figure 13.5. The difference between
the surplus achieved with the tax and the welfare achieved in the original
equilibrium is known as the deadweight loss; it is given by the triangle-
shaped region in Figure 13.5. The deadweight loss measures the value to
the consumer of the lost output.
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PRICE
Tax
re/venue Supply
/
Py |
ps
Deadweight Demand
loss
QUANTITY
Deadweight loss. The lightly shaded region indicates the
total revenue from the tax. The darker triangular region is the
deadweight loss.
Notes

This is standard neoclassical analysis of a single market. It probably first
took the form examined here in Marshall (1920).

Exercises

13.1. Let v(p) + m be the indirect utility function of a representative con-
sumer, and let w(p) be the profit function of a representative firm. Let
welfare as a function of price be given by v(p) + 7(p). Show that the
competitive price minimizes this function. Can you explain why the equi-
librium price minimizes this welfare measure rather than maximizes it?

13.2. Show that the integral of the supply function between pg and p; gives
the change in profits when price changes from pg to p;.

13.3. An industry consists of a large number of firms, each of which has a
cost function of the form

c(wy,w2,y) = (4 + Dwr + (1 + 2)ws.
(a) Find the average cost curve of a firm and describe how it shifts as
the factor price w; /we changes.
(b) Find the short-run supply curve of an individual firm.

(c) Find the long-run industry supply curve.
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(d)} Describe an input requirement set for an individual firm.

13.4. Farmers produce corn from land and labor. The labor cost in dollars
to produce y bushels of corn is ¢(y) = y%. There are 100 identical farms
which all behave competitively.

(a) What is the individual farmer’s supply curve of corn?
(b) What is the market supply of corn?

(c) Suppose the demand curve of corn is D(p) = 200 — 50p. What is the
equilibrium price and quantity sold?

(d) What is the equilibrium rent on the land?

13.5. Consider a model where the U.S. and England engage in trade in
umbrellas. The representative firm in England produces the export model
umbrella according to a production function f(K,L) where K and L are
the amounts of capital and labor used in production. Let r and w be
the price of capital and the price of labor respectively in England, and
let c(w,r,y) be the cost function associated with the production function
f(K,L). Suppose that initially the equilibrium price of umbrellas is p* and
the equilibrium output is y*. Assume for simplicity that all of the export
model umbrellas are exported, that there is no production of umbrellas in
the U.S., and that all markets are competitive.

(a) England decides to subsidize the production and export of umbrellas
by imposing an export subsidy s on each umbrella, so that each umbrella
exported earns the exporter p + s. What size import tax ¢(s) should the
U.S. choose so as to offset the imposition of this subsidy; i.e., to keep the
production and export of umbrellas constant at y*? (Hint: This is the easy
part; don’t get too subtle.)

(b) Since it is so easy for the U.S. to offset the effects of this export
subsidy, England decides instead to use a capital subsidy. In particular,
they decide to subsidize capital purchases with a specific subsidy of s so
that the price of capital to English umbrella makers is 7 — s. The U.S.
decides to retaliate by putting a tax ¢(s) on imported umbrellas that will
be sufficient to keep the number of umbrellas produced constant at y*.
What must be the relationship between the price paid by the consumers,
D, the tax, t(s), and the cost function, c(w, r,y)?

(c) Calculate an expression for ¢'(s) involving the conditional factor
demand function for capital, K(w,r,y).

(d) Suppose that the production function exhibits constant returns to
scale. What simplification does this make to your formula for ¢'(s)?
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(e) Suppose that capital is an inferior factor of production in umbrella
making. What is unusual about the tariff ¢(s) that will offset the capital
subsidy in England?

13.6. On a tropical island there are 100 boat builders, numbered 1 through
100. Each builder can build up to 12 boats a year and each builder maxi-
mizes its profits given the market price. Let y denote the number of boats
built per year by a particular builder, and suppose that builder 1 has a
cost function ¢(y) = 11 + y, builder 2 has a cost function ¢(y) = 11 + 2y,
etc. That is, for each ¢, from 1 to 100, boat builder ¢ has a cost function
c(y) = 11 + iy. Assume that the fixed cost of $11 is a quasifixed cost; i.e.,
it is only paid if the firm produces a positive level of output. If the price of
boats is 25, how many builders will choose to produce a positive amount of
output? If the price of boats is 25, how many boats will be built per year
in total?

13.7. Consider an industry with the following structure. There are 50 firms
that behave in a competitive manner and have identical cost functions given
by c(y) = y2/2. There is one monopolist that has 0 marginal costs. The
demand curve for the product is given by

D(p) = 1000 — 50p.

(a) What is the monopolist’s profit-maximizing output?

(b) What is the monopolist’s profit-maximizing price?

¢) How much does the competitive sector supply at this price?
pply

13.8. U.S. consumers have a demand function for umbrellas which has the
form D(p) = 90 — p. Umbrellas are supplied by U.S. firms and U.K. firms.
For simplicity, assume that there is a single representative firm in each
country that behaves competitively. The cost function for producing um-
brellas is given by c(y) = ¥?/2 in each country.

(a) What is the aggregate supply function for umbrellas?
(b) What is the equilibrium price and quantity sold?

(c) Now the domestic industry lobbies for protection and Congress agrees
to put a $3 tariff on foreign umbrellas. What is the new U.S. price for
umbrellas paid by the consumers?

(d) How many umbrellas are supplied by foreign firms and how many
are supplied by domestic firms?



CHAPTER 1 4

MONOPOLY

The word monopoly originally meant the right of exclusive sale. It has
come to be used to describe any situation in which some firm or small
group of firms has the exclusive control of a product in a given market.
The difficulty with this definition comes in defining what one means by a
“given market.” There are many firms in the soft-drink market, but only
a few firms in the cola market.

The relevant feature of a monopolist from the viewpoint of economic
analysis is that a monopolist has market power in the sense that the amount
of output that it is able to sell responds continuously as a function of the
price it charges. This is to be contrasted to the case of a competitive firm
whose sales drop to zero if it charges a price higher than the prevailing
market price. A competitive firm is a price-taker; a monopoly is a price-
maker.

The monopolist faces two sorts of constraints when it chooses its price
and output levels. First, it faces the standard technological constraints of
the sort described earlier—there are only certain patterns of inputs and
outputs that are technologically feasible. We will find it convenient to
summarize the technological constraints by the use of the cost function,
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c(y). (We omit the factor prices as an argument in the cost function since
we will assume that they are fixed.)

The second set of constraints that the monopolist faces is that presented
by the consumers’ behavior. The consumers are willing to purchase differ-
ent amounts of the good at different prices, and we summarize this rela-
tionship using the demand function, D{p).

The monopolist’s profit maximization problem can be written as

max py — c(y)
DYy

such that D(p) > y

In most cases of interest, the monopolist will want to produce the amount
that the consumers demand, so the constraint can be written as the equality
y = D(p). Substituting for y in the objective function, we have the problem

max pD(p) — c(D(p))-

Although this is perhaps the most natural way to pose the monopolist’s
maximization problem, it turns out to be more convenient in most situa-
tions to use the inverse rather than the direct demand function.

Let p(y) be the inverse demand function—the price that must be charged
to sell ¥ units of output. Then the revenue that the monopolist can expect
to receive if it produces y units of output is 7(y) = p(y)y. We can pose the
monopolist’s maximization problem as

4

max p(y)y — c(y).

The first- and second-order conditions for this problem are

p(y) + 2 (v)y = (v) (14.1)
20" (y) + 0" (w)y — ¢ (y) <0. (14.2)

The first-order condition says that at the profit-maximizing choice of output
marginal revenue must equal marginal cost. Let us consider this condition
more closely. When the monopolist considers selling dy units more output,
it has to take into account two effects. First, its revenues increase by pdy
because it sells more output at the current price. But second, in order to

sell this additional output it must reduce its price by dp = %dy, and this

lower price applies to all the units y it is selling. The additional revenue
from selling the additional output is therefore given by

d
pdy +dpy = [p+ fy] dy,
Y
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and it is this quantity that must be balanced against marginal cost.

The second-order condition requires that the derivative of marginal rev-
enue must be less than the derivative of marginal cost; i.e., the marginal
revenue curve crosses the marginal cost curve from above.

The first-order condition can be rearranged to take the form

W@)=?@)P+fmy]=JWL

dyp
or 1
p() [1 + m] — (), (143)
where J
_pdy
dw—y@

is the (price) elasticity of demand facing the monopolist. Note that
the elasticity will be a negative number as long as the consumers’ demand
curve has a negative slope, which is certainly the standard case.

It follows from the first-order condition that at the optimal level of output
the elasticity of demand must be greater than 1 in absolute value. If this
were not the case, marginal revenue would be negative and hence could not
be equal to the nonnegative marginal cost.

The optimal output of the monopolist is represented graphically in Fig-
ure 14.1. The marginal revenue curve is given by 7'(y) = p(y) + ¢'(¥)y.
Since p'(y) < 0 by assumption, the marginal revenue curve lies beneath the
inverse demand curve.

PRICE

Pm

Demand

Ym QUANTITY

Determination of the monopoly output. The monopolist
produces where marginal revenue equals marginal cost.

When y = 0 the marginal revenue from selling an extra unit of output
is just the price p{0). However, when y > 0, the marginal revenue from

Figure
14.1



236 MONOPOLY (Ch. 14)

selling an extra unit of output must be less than the price since the only
way to sell the additional output is to reduce the price, and this reduction
in the price will affect the revenue received from all the inframarginal units
sold.

The optimal level of output of the monopolist is where the marginal rev-
enue curve crosses the marginal cost curve. In order to satisfy the second-
order condition, the M R curve must cross the MC curve from above. We
will typically assume that there is a unique profit-maximizing level of out-
put. Given the level of output, say y*, the price charged will be given by

p(y*).

14.1 Special cases

There are two special cases for monopoly behavior that are worth men-
tioning. The first is that of linear demand. If the inverse demand curve is
of the form p(y) = a — by, then the revenue function will be of the form
r(y) = ay — by? and the marginal revenue takes the form r'(y) = a — 2by.
Hence, the marginal revenue curve is twice as steep as the demand curve.
If firm exhibits constant marginal costs of the form c(y) = cy, we can
solve the marginal revenue equals marginal cost equations to determine
the monopoly price and output directly:

«_a—¢
YT
«_a+c
D = 5

The other case of interest is the constant elasticity demand function,
y = Ap~b. As we saw earlier, the elasticity of demand is constant and
given by e(y) = —b. In this case we can apply (14.3) and write

ply) = 1_;1/1)

Hence, for the constant elasticity demand function, price is a constant
markup over marginal cost, with the amount of the markup depending on
the elasticity of demand.

14.2 Comparative statics

It is often of interest to determine how the monopolist’s output and price
change as its costs change. Suppose for simplicity that the marginal costs
are constant. Then the profit maximization problem is

max p(y)y — cy,
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and the first-order condition is

p(y)+9'(y)y—c=0.

We know from the standard comparative statics calculation that the sign
of dy/dc is the same as the sign of the derivative of the first-order condi-
tion with respect to ¢. This is easily seen to be negative, so we conclude
that a profit-maximizing monopolist will always reduce its output when its
marginal costs increase.

It is more interesting to calculate the effect of a cost change on price.
We know from the chain rule that

dp _dpdy
de ~ dydc’

It is clear from this expression that dp/dc > 0, but it is often useful to
know the magnitude of dp/dec.
The standard comparative statics calculation tells us that

dy _ _ &m/dydc
de = 0m/oy?’

Taking the appropriate second derivatives of the profit function, we have

dy _ 1
de ~ 2p'(y) +yp"(v)

It follows that
dp _ Py
de  2p'(y) +yp"(y)

This can also be written as

p _ 1
de  2+yp"(y)/¥(y)

From this expression, it is easy to see what happens in the special cases
mentioned above. If demand is linear, then p”(y) = 0 and dp/dc = 1/2. If
the demand function exhibits constant elasticity of €, then dp/de = €/(1+¢).
In the case of a linear demand curve, half of a cost increase is passed along
in the form of increased prices. In the case of a constant elasticity demand,
prices increase by more than the increase in costs—the more inelastic the
demand, the more of the cost increase gets passed along.
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14.3 Welfare and output

We have seen in Chapter 13 that under certain conditions the level of
output at which price equals marginal cost is Pareto efficient. Since the
marginal revenue curve always lies under the inverse demand curve, it is
clear that a monopoly must produce a level of output which is less than this
Pareto efficient amount. In this section we will examine this inefficiency of
monopoly in a bit more detail.

For simplicity, let us consider an economy with one consumer, possessing
a quasilinear utility function u{x) + y. As we've seen in Chapter 13, the
inverse demand function for this form of utility function is given by p(z) =
u'(x). Let c¢(z) denote the amount of the y-good necessary to produce
z units of the x-good. Then a sensible social objective is to choose x to
maximize utility:

W(z) = u(z) — c(z).
This implies that the socially optimal level of output, z,, is given by
w'(20) = p(zo) = ¢'(2,).
On the other hand, the level of monopoly output satisfies the condition
P(@m) + P (Zm)Tm = ¢ (zm)-

Hence, the derivative of the welfare function evaluated at the monopoly
level of output is given by

W' (zm) = u'(zm) — (@m) = —p' (@n)Tm = =t (@m)Tm > 0.
It follows from the concavity of u(z) that increasing output will increase
utility.

We could make the same argument slightly differently. We can also write
the social objective function as consumer’s surplus plus profits:

W(z) = [u(z) — p(z)z] + [p(z)z — c(z)]-
The derivative of profits with respect to z is zero at the monopoly output,

since the monopolist chooses the level of output that maximizes profits.
The derivative of consumer’s surplus at z,, is given by

w(zm) = p(Tm) — p/(wm)érm = —p'(Zn)Trm,

which is certainly positive.
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14.4 Quality choice

Monopolies choose not only output levels, but also other dimensions of the
products they produce. Consider, for example, product quality. Let us
suppose that we can denote product quality by some numerical level g. We
suppose that both utility and costs depend on quality and take the social
objective function to be

W(:l"aq) = U(E, q) - C(l‘,q).

(As usual, we assume quasilinear utility for a simple analysis.) We assume
that quality is a good, so that du/0q > 0 and that it is costly to produce,
so that de/dq > 0.

The monopolist maximizes profits:

max p(z,q)z — c(z,q).

x,q

The first-order conditions for this problem are

(.’L‘m, qm) o Bc(xm, Qm)

1s)
P(Tmy Gm) + 2

oz m oz
8p($m, Qm) o ac(wm’ Qm)
Oq m Oq '

Let us calculate the derivative of the welfare function at (x,n, ¢n). We have

aW(zmv(Zm) _ 6u(mm»Qm) _ 8C($m, qm)

oz ox oz
OW (T, gm) _ Ou(@mygm)  Oc(Tm,gm)
dq - Oq oq

Upon substituting from the first-order conditions, we find

aW(xm,Qm) 8p(zm7 Qm)

= — 14.
oz oz Zm >0 (14.4)
oW (mman) au(mman) ap(mm,‘Im)
= — . 14.
Oq Jq dq Lm ( 5)

The first equation tells us that, holding quality fixed, the monopolist pro-
duces too little output, relative to the social optimum. The second equation
is not quite so easy to interpret. Since dp/0q equals the marginal cost of
producing more quality, it must be positive, so the derivative of welfare
with respect to quality is the difference between two positive numbers and
is, on the face of it, ambiguous.
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The question is, can we find any plausible conditions on demand behavior
that will sign the expression? This is a case where it is much easier to see
the answer if we write the social objective function as consumer’s surplus
plus profits rather than utility minus costs. The social objective function
takes the form

W(z,q) = [u(z,q) - p(z,q)7] + [p(z, @)z — (=, q)]
= consumer’s surplus + profits.

Now differentiate this definition with respect to z and ¢ and evaluate the
derivative at the monopolist’s profit-maximizing level of output. Since the
monopolist is maximizing profits, the derivatives of monopoly profits with
respect to output and quality must vanish, indicating that the derivative
of welfare with respect to quantity and quality is precisely the derivative
of consumer’s surplus with respect to quantity and quality.

The derivative of consumer’s surplus with respect to quantity is always
positive, which is just another way of saying that the monopolist produces
too little output. The derivative of consumer’s surplus with respect to
quality is ambiguous—it may be positive or it may be negative. Its sign
depends on the sign of 8%p(z, q)/dzdq.

To see this, consider Figure 14.2. When quality increases, the demand
curve shifts up and (possibly) tilts one way or the other. Decompose this
movement into a parallel shift up and a pivot, as indicated. Consumer’s
surplus is unaffected by the parallel shift, so the total change simply de-
pends on whether the inverse demand curve becomes flatter or steeper. If
the slope of the inverse demand curve gets flatter consumer’s surplus goes
down and vice-versa.’

Another way to interpret equation (14.5) is based on consideration of the
reservation price model. Think of p(z, ¢) as measuring the reservation price
of consumer z, so that u(z, q) is just the sum of the reservation prices. In
this interpretation, u(z,q)/z is the average willingness to pay and p(z, q)
is the marginal willingness to pay. We can rewrite (14.5) as

1 OW(zm,gm) _ O [u(@m,gm)

T dq = dq . - p(Zm, qm) | -

The derivative of welfare with respect to q is now seen to be proportional to
the derivative of the average willingness to pay for the quality change minus
the derivative of the marginal willingness to pay for the quality change.

Social welfare depends on the sum of the consumers’ utility or willingness
to pay; but the monopolist only cares about the willingness to pay of the
marginal individual. If these two values are different, the monopolist’s
quality choice will not be optimal from the social viewpoint.

1 Note that the slope of the demand curve is negative; to say the slope gets flatter
means that it gets closer to zero.
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PRICE

k Tilt demand
Pm

INC

Shift demand

Demand

X QUANTITY

Effect on consumer’s surplus of a change in quality.
When the demand curve shifts up and tilts, the effect on con-
sumer’s surplus depends only on the direction of the tilt.

14.5 Price discrimination

Loosely speaking, price discrimination involves selling different units of the
same good at different prices, either to the same or different consumers.
Price discrimination arises naturally in the study of monopoly since we
have seen that a monopolist will typically desire to sell additional output
if it can find a way to do so without lowering the price on the units it is
currently selling.

In order for price discrimination to be a viable strategy for the firm, it
must have the ability to sort consumers and to prevent resale. Preventing
resale is generally not a severe problem, and most of the difficulties associ-
ated with price discrimination are concerned with sorting the consumers.
The easiest case is where the firm can explicitly sort consumers with re-
spect to some exogenous category such as age. A more complex analysis is
necessary when the firm must price discriminate on the basis of some en-
dogenous category such as the amount of purchase or the time of purchase.
In this case the monopolist faces the problem of structuring its pricing so
that consumers “self select” into appropriate categories.

The traditional classification of the forms of price discrimination is due
to Pigou (1920).

First-degree price discrimination involves the seller charging a dif-
ferent price for each unit of the good in such a way that the price charged
for each unit is equal to the maximum willingness-to-pay for that unit.
This is also known as perfect price discrimination

Figure
14.2
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Second-degree price discrimination occurs when prices differ de-
pending on the number of units of the good bought, but not across con-
sumers. This phenomenon is also known as nonlinear pricing. Each
consumer faces the same price schedule, but the schedule involves dif-
ferent prices for different amounts of the good purchased. Quantity dis-
counts or premia are the obvious examples.

Third-degree price discrimination means that different purchasers
are charged different prices, but each purchaser pays a constant amount
for each unit of the good bought. This is perhaps the most common
form of price discrimination; examples are student discounts, or charging
different prices on different days of the week.

We will investigate these three forms of price discrimination in the con-
text of a very simple model. Suppose that there are two potential con-
sumers with utility functions u;(x) + ¥, for i = 1, 2. For simplicity, normal-
ize utility so that u;(0) = 0. Consumer 4’s maximum willingness-to-pay for
some consumption level z will be denoted by r;(z). It is the solution to
the equation

ui(0) +y = ui(z) —rs(z) + .

The left-hand side of the equation gives the utility from zero consumption of
the good, and the right-hand side gives the utility from consuming z units
and paying a price r;(z). By virtue of our normalization, r;(z) = u;(x).

Another useful function associated with the utility function is the mar-
ginal willingness-to-pay function, i.e., the (inverse) demand function. This
function measures what the per-unit price would have to be to induce the
consumer to demand z units of the consumption good. If the consumer
faces a per-unit price p and chooses the optimal level of consumption, he
or she must solve the utility maximization problem

max u;(z) +y
Y

such that pz +y =m.
As we have seen several times, the first-order condition for this problem is
p = ui(x). (14.6)

Hence, the inverse demand function is given explicitly by (14.6): the price
necessary to induce consumer ¢ to choose consumption level z is p = p;(z) =
We will suppose that the maximum willingness-to-pay for the good by
consumer 2 always exceeds the maximum willingness-to-pay by consumer 1;

i.e., that
us(z) > uy(z) for all z. (14.7)
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We will also generally suppose that the marginal willingness-to-pay for the
good by consumer 2 exceeds the marginal willingness-to-pay by consumer 1;
i.e., that

uy(z) > uj(z) forallz. (14.8)

Thus it is natural to refer to consumer 2 as the high demand consumer
and consumer 1 as the low demand consumer.

We will suppose that there is a single seller of the good in question who
can produce it at a constant marginal cost of ¢ per unit. Thus the cost
function of the monopolist is ¢(z) = cz.

14.6 First-degree price discrimination

Suppose for the moment that there is only one agent, so that we can drop
the subscript distinguishing the agents. A monopolist wants to offer the
agent some price and output combination (r*, z*) that yields the maximum
profits for the monopolist. The price 7* is a take-it-or-leave-it price—the
consumer can either pay r* and consume z*, or consume zero units of the
good.

The profit maximization problem of the monopolist is

max r — cx
T

such that u(z) > r.

The constraint simply indicates that the consumer must get nonnegative
surplus from his consumption of the x-good. Since the monopolist wants r
to be as large as possible, this constraint will be satisfied as an equality.

Substituting from the constraint and differentiating, we find the first-
order condition determining the optimal level of production to be

u(z*) =ec (14.9)
Given this level of production, the take-it-or-leave-it price is
r* = u(zx").

There are several points worth noting about this solution. First, the
monopolist will choose to produce a Pareto efficient level of output—a
level of output where the marginal willingness-to-pay equals marginal cost.
However, the producer will also manage to capture all the benefits from this
efficient level of production—it will achieve the maximum possible profits,
while the consumer is indifferent to consuming the product or not.

Second, the monopolist in this market produces the same level of output
as would a competitive industry. A competitive industry will produce where
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price equals marginal cost and supply equals demand. Together, these two
conditions imply that p(z) = ¢, which is precisely the equation (14.9)
coupled with the definition of the inverse demand function in (14.6). Of
course, the gains from trade are divided much differently in the competitive
equilibrium. In this case, the consumer gets utility u(z*) — cz* and the firm
gets zero profits.

Third, the same outcome can be achieved if the monopolist sells each unit
of output to the consumer at a different price. Suppose, for example, that
the firm breaks up the output into n pieces of size Az, so that x = nAx.
Then the willingness-to-pay for the first unit of consumption will be given
by

w(0) +m = u(Az) + m — p;,

or
u(0) = u(Az) — p1.

Similarly, the marginal willingness-to-pay for the second unit of consump-
tion is
u(Az) = u(2Az) — po.

Proceeding this way up to the n units, we have the sequence of equations,

u(0) = u(Az) — py
u(Azr) = u(2Az) — po

u((n — 1)Az) = u(z) — pn.

Adding up these n equations and using the normalization that «(0) = 0, we
have > | p, = u(z). That is the sum of the marginal willingnesses-to-pay
must equal the total willingness-to-pay. So it doesn’t matter how the firm
price discriminates: making a single take-it-or-leave it offer, or selling each
unit of the good at the marginal willingness-to-pay for that unit.

14.7 Second-degree price discrimination

Second-degree price discrimination is also known as nonlinear pricing.
This involves such practices as quantity discounts, where the revenue a firm
collects is a nonlinear function of the amount purchased. In this section we
will analyze a simple problem of this type.

Recall the notation introduced earlier. There are two consumers with
utility functions uy(z1)+y1 and us(x2)+y2, where we assume that ua(z) >
w1 (z) and u5(z) > u)(r). We refer to consumer 2 as the high-demand con-
sumer and consumer 1 as the low-demand consumer. The assumption that
the consumer with the larger total willingness-to-pay also has the larger
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marginal willingness-to-pay is sometimes known as the single crossing
property since it implies that any two indifference curves for the agents
can intersect at most once.

Suppose that the monopolist chooses some (nonlinear) function p(z) that
indicates how much it will charge if z units are demanded. Suppose that
consumer 7 demands z, units and spends r; = p(z;)z; dollars. From the
viewpoint of both the consumer and the monopolist all that is relevant is
that the consumer spends r; dollars and receives z; units of output. Hence,
the choice of the function p(z) reduces to the choice of (r;, ;). Consumer
1 will choose (71, 1) and consumer 2 will choose (rg,x2).

The constraints facing the monopolist are as follows. First, each con-
sumer must want to consume the amount z; and be willing to pay the
price 7,:

ur(r1) —r1 20
Ug(iL‘g) —re 2> 0.

This simply says that each consumer must do at least as well consuming
the x-good as not consuming it. Second, each consumer must prefer his
consumption to the consumption of the other consumer.

ui(z1) — r1 > wi (@) —r2

ug(z2) — r2 > uz(xy) — 1.

These are the so-called self-selection constraints. If the plan (zq,z,)
is to be feasible in the sense that it will be voluntarily chosen by the con-
sumers, then each consumer must prefer consuming the bundle intended
for him as compared to consuming the other person’s bundle.

Rearrange the inequalities in the above paragraph as

T < ul(:cl) (1410)
1 S ul(ml) - ul(.’Ez) + 7o (1411)
T2 S UQ(J,’Q) (1412)
T2 S Ug(.’l)z) — u2($1) + 7. (1413)

Of course, the monopolist wants to choose r; and ry to be as large as
possible. It follows that in general one of the first two inequalities will be
binding and one of the second two inequalities will be binding. It turns out
that the assumptions that us(z) > v (z) and u5(z) > uf(x) are sufficient
to determine which constraints will bind, as we now demonstrate.

To begin with, suppose that (14.12) is binding. Then (14.13) implies *
that

re < 13 — ug(x1) + 71,

or
us(xy) < ry.
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Using (14.7) we can write
ur(zy) < wz(zy) <7y,

which contradicts (14.10). It follows that (14.12) is not binding and that
(14.13) is binding, a fact which we note for future use:

re = ug(x2) — u2(x1) + 1. (14.14)

Now consider (14.10) and (14.11). If (14.11) were binding, we would
have
r1 = ui(z1) — wa(z2) + 72

Substitute from (14.14) to find
r = ul(zl) — ul(.’llg) -+ uz((l:z) - uz(l'l) +r1,

which implies
uz(z2) — ua(z1) = ui(z2) — ui(z1)-

We can rewrite this expression as

T T2
/ ui(t)dt = / up(t) dt.
I T

However, this violates the assumption that uj(z) > uf(z). It follows that
(14.11) is not binding and that (14.10) is binding, so

r = ul(zl). (1415)

Equations (14.14) and (14.15) imply that the low-demand consumer will
be charged his maximum willingness-to-pay, and the high-demand con-
sumer will be charged the highest price that will just induce him to consume
9 rather than z;.

The profit function of the monopolist is

T = [r1 — cx1] + [r2 — cz2),
wh